File size: 10,237 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Testing

We introduce the way to test pretrained models on datasets here.

## Testing with Single GPU

You can use `tools/test.py` to perform single CPU/GPU inference. For example, to evaluate DBNet on IC15: (You can download pretrained models from [Model Zoo](modelzoo.md)):

```shell
./tools/dist_test.sh configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth --eval hmean-iou
```

And here is the full usage of the script:

```shell
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]
```

:::{note}
By default, MMOCR prefers GPU(s) to CPU. If you want to test a model on CPU, please empty `CUDA_VISIBLE_DEVICES` or set it to -1 to make GPU(s) invisible to the program. Note that running CPU tests requires **MMCV >= 1.4.4**.

```bash
CUDA_VISIBLE_DEVICES= python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]
```

:::



| ARGS               | Type                              | Description                                                                                                                                                                                                                                                                                                                                                                            |
| ------------------ | --------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--out`            | str                               | Output result file in pickle format.                                                                                                                                                                                                                                                                                                                                                   |
| `--fuse-conv-bn`   | bool                              | Path to the custom config of the selected det model.                                                                                                                                                                                                                                                                                                                                   |
| `--format-only`    | bool                              | Format the output results without performing evaluation. It is useful when you want to format the results to a specific format and submit them to the test server.                                                                                                                                                                                                                     |
| `--gpu-id`         | int                               | GPU id to use. Only applicable to non-distributed training.                                                                                                                                                                                                                                                                                                                            |
| `--eval`           | 'hmean-ic13', 'hmean-iou', 'acc'  | The evaluation metrics, which depends on the task. For text detection, the metric should be either 'hmean-ic13' or 'hmean-iou'. For text recognition, the metric should be 'acc'.                                                                                                                                                                                                      |
| `--show`           | bool                              | Whether to show results.                                                                                                                                                                                                                                                                                                                                                               |
| `--show-dir`       | str                               | Directory where the output images will be saved.                                                                                                                                                                                                                                                                                                                                       |
| `--show-score-thr` | float                             | Score threshold (default: 0.3).                                                                                                                                                                                                                                                                                                                                                        |
| `--gpu-collect`    | bool                              | Whether to use gpu to collect results.                                                                                                                                                                                                                                                                                                                                                 |
| `--tmpdir`         | str                               | The tmp directory used for collecting results from multiple workers, available when gpu-collect is not specified.                                                                                                                                                                                                                                                                      |
| `--cfg-options`    | str                               | Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed. |
| `--eval-options`   | str                               | Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for dataset.evaluate() function.                                                                                                                                                                                                                                                                    |
| `--launcher`       | 'none', 'pytorch', 'slurm', 'mpi' | Options for job launcher.                                                                                                                                                                                                                                                                                                                                                              |


## Testing with Multiple GPUs

MMOCR implements **distributed** testing with `MMDistributedDataParallel`.

You can use the following command to test a dataset with multiple GPUs.

```shell
[PORT={PORT}] ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
```


| Arguments | Type | Description                                                                      |
| --------- | ---- | -------------------------------------------------------------------------------- |
| `PORT`    | int  | The master port that will be used by the machine with rank 0. Defaults to 29500. |
| `PY_ARGS` | str  | Arguments to be parsed by `tools/test.py`.                                       |


For example,

```shell
./tools/dist_test.sh configs/example_config.py work_dirs/example_exp/example_model_20200202.pth 1 --eval hmean-iou
```

## Testing with Slurm

If you run MMOCR on a cluster managed with [Slurm](https://slurm.schedmd.com/), you can use the script `tools/slurm_test.sh`.


```shell
[GPUS=${GPUS}] [GPUS_PER_NODE=${GPUS_PER_NODE}] [SRUN_ARGS=${SRUN_ARGS}] ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS]
```

| Arguments       | Type | Description                                                                                                 |
| --------------- | ---- | ----------------------------------------------------------------------------------------------------------- |
| `GPUS`          | int  | The number of GPUs to be used by this task. Defaults to 8.                                                  |
| `GPUS_PER_NODE` | int  | The number of GPUs to be allocated per node. Defaults to 8.                                                 |
| `SRUN_ARGS`     | str  | Arguments to be parsed by srun. Available options can be found [here](https://slurm.schedmd.com/srun.html). |
| `PY_ARGS`       | str  | Arguments to be parsed by `tools/test.py`.                                                                  |


Here is an example of using 8 GPUs to test an example model on the 'dev' partition with job name 'test_job'.

```shell
GPUS=8 ./tools/slurm_test.sh dev test_job configs/example_config.py work_dirs/example_exp/example_model_20200202.pth --eval hmean-iou
```

## Batch Testing

By default, MMOCR tests the model image by image. For faster inference, you may change `data.val_dataloader.samples_per_gpu` and `data.test_dataloader.samples_per_gpu` in the config. For example,

```
data = dict(
    ...
    val_dataloader=dict(samples_per_gpu=16),
    test_dataloader=dict(samples_per_gpu=16),
    ...
)
```
will test the model with 16 images in a batch.

:::{warning}
Batch testing may incur performance decrease of the model due to the different behavior of the data preprocessing pipeline.
:::