File size: 30,432 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os
import shutil
import urllib
import warnings

import cv2
import mmcv
import numpy as np
import torch
from matplotlib import pyplot as plt
from PIL import Image, ImageDraw, ImageFont

import mmocr.utils as utils


def overlay_mask_img(img, mask):
    """Draw mask boundaries on image for visualization.

    Args:
        img (ndarray): The input image.
        mask (ndarray): The instance mask.

    Returns:
        img (ndarray): The output image with instance boundaries on it.
    """
    assert isinstance(img, np.ndarray)
    assert isinstance(mask, np.ndarray)

    contours, _ = cv2.findContours(
        mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    cv2.drawContours(img, contours, -1, (0, 255, 0), 1)

    return img


def show_feature(features, names, to_uint8, out_file=None):
    """Visualize a list of feature maps.

    Args:
        features (list(ndarray)): The feature map list.
        names (list(str)): The visualized title list.
        to_uint8 (list(1|0)): The list indicating whether to convent
            feature maps to uint8.
        out_file (str): The output file name. If set to None,
            the output image will be shown without saving.
    """
    assert utils.is_type_list(features, np.ndarray)
    assert utils.is_type_list(names, str)
    assert utils.is_type_list(to_uint8, int)
    assert utils.is_none_or_type(out_file, str)
    assert utils.equal_len(features, names, to_uint8)

    num = len(features)
    row = col = math.ceil(math.sqrt(num))

    for i, (f, n) in enumerate(zip(features, names)):
        plt.subplot(row, col, i + 1)
        plt.title(n)
        if to_uint8[i]:
            f = f.astype(np.uint8)
        plt.imshow(f)
    if out_file is None:
        plt.show()
    else:
        plt.savefig(out_file)


def show_img_boundary(img, boundary):
    """Show image and instance boundaires.

    Args:
        img (ndarray): The input image.
        boundary (list[float or int]): The input boundary.
    """
    assert isinstance(img, np.ndarray)
    assert utils.is_type_list(boundary, (int, float))

    cv2.polylines(
        img, [np.array(boundary).astype(np.int32).reshape(-1, 1, 2)],
        True,
        color=(0, 255, 0),
        thickness=1)
    plt.imshow(img)
    plt.show()


def show_pred_gt(preds,
                 gts,
                 show=False,
                 win_name='',
                 wait_time=0,
                 out_file=None):
    """Show detection and ground truth for one image.

    Args:
        preds (list[list[float]]): The detection boundary list.
        gts (list[list[float]]): The ground truth boundary list.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): The value of waitKey param.
        out_file (str): The filename of the output.
    """
    assert utils.is_2dlist(preds)
    assert utils.is_2dlist(gts)
    assert isinstance(show, bool)
    assert isinstance(win_name, str)
    assert isinstance(wait_time, int)
    assert utils.is_none_or_type(out_file, str)

    p_xy = [p for boundary in preds for p in boundary]
    gt_xy = [g for gt in gts for g in gt]

    max_xy = np.max(np.array(p_xy + gt_xy).reshape(-1, 2), axis=0)

    width = int(max_xy[0]) + 100
    height = int(max_xy[1]) + 100

    img = np.ones((height, width, 3), np.int8) * 255
    pred_color = mmcv.color_val('red')
    gt_color = mmcv.color_val('blue')
    thickness = 1

    for boundary in preds:
        cv2.polylines(
            img, [np.array(boundary).astype(np.int32).reshape(-1, 1, 2)],
            True,
            color=pred_color,
            thickness=thickness)
    for gt in gts:
        cv2.polylines(
            img, [np.array(gt).astype(np.int32).reshape(-1, 1, 2)],
            True,
            color=gt_color,
            thickness=thickness)
    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img


def imshow_pred_boundary(img,
                         boundaries_with_scores,
                         labels,
                         score_thr=0,
                         boundary_color='blue',
                         text_color='blue',
                         thickness=1,
                         font_scale=0.5,
                         show=True,
                         win_name='',
                         wait_time=0,
                         out_file=None,
                         show_score=False):
    """Draw boundaries and class labels (with scores) on an image.

    Args:
        img (str or ndarray): The image to be displayed.
        boundaries_with_scores (list[list[float]]): Boundaries with scores.
        labels (list[int]): Labels of boundaries.
        score_thr (float): Minimum score of boundaries to be shown.
        boundary_color (str or tuple or :obj:`Color`): Color of boundaries.
        text_color (str or tuple or :obj:`Color`): Color of texts.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str or None): The filename of the output.
        show_score (bool): Whether to show text instance score.
    """
    assert isinstance(img, (str, np.ndarray))
    assert utils.is_2dlist(boundaries_with_scores)
    assert utils.is_type_list(labels, int)
    assert utils.equal_len(boundaries_with_scores, labels)
    if len(boundaries_with_scores) == 0:
        warnings.warn('0 text found in ' + out_file)
        return None

    utils.valid_boundary(boundaries_with_scores[0])
    img = mmcv.imread(img)

    scores = np.array([b[-1] for b in boundaries_with_scores])
    inds = scores > score_thr
    boundaries = [boundaries_with_scores[i][:-1] for i in np.where(inds)[0]]
    scores = [scores[i] for i in np.where(inds)[0]]
    labels = [labels[i] for i in np.where(inds)[0]]

    boundary_color = mmcv.color_val(boundary_color)
    text_color = mmcv.color_val(text_color)
    font_scale = 0.5

    for boundary, score in zip(boundaries, scores):
        boundary_int = np.array(boundary).astype(np.int32)

        cv2.polylines(
            img, [boundary_int.reshape(-1, 1, 2)],
            True,
            color=boundary_color,
            thickness=thickness)

        if show_score:
            label_text = f'{score:.02f}'
            cv2.putText(img, label_text,
                        (boundary_int[0], boundary_int[1] - 2),
                        cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img


def imshow_text_char_boundary(img,
                              text_quads,
                              boundaries,
                              char_quads,
                              chars,
                              show=False,
                              thickness=1,
                              font_scale=0.5,
                              win_name='',
                              wait_time=-1,
                              out_file=None):
    """Draw text boxes and char boxes on img.

    Args:
        img (str or ndarray): The img to be displayed.
        text_quads (list[list[int|float]]): The text boxes.
        boundaries (list[list[int|float]]): The boundary list.
        char_quads (list[list[list[int|float]]]): A 2d list of char boxes.
            char_quads[i] is for the ith text, and char_quads[i][j] is the jth
            char of the ith text.
        chars (list[list[char]]). The string for each text box.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str or None): The filename of the output.
    """
    assert isinstance(img, (np.ndarray, str))
    assert utils.is_2dlist(text_quads)
    assert utils.is_2dlist(boundaries)
    assert utils.is_3dlist(char_quads)
    assert utils.is_2dlist(chars)
    assert utils.equal_len(text_quads, char_quads, boundaries)

    img = mmcv.imread(img)
    char_color = [mmcv.color_val('blue'), mmcv.color_val('green')]
    text_color = mmcv.color_val('red')
    text_inx = 0
    for text_box, boundary, char_box, txt in zip(text_quads, boundaries,
                                                 char_quads, chars):
        text_box = np.array(text_box)
        boundary = np.array(boundary)

        text_box = text_box.reshape(-1, 2).astype(np.int32)
        cv2.polylines(
            img, [text_box.reshape(-1, 1, 2)],
            True,
            color=text_color,
            thickness=thickness)
        if boundary.shape[0] > 0:
            cv2.polylines(
                img, [boundary.reshape(-1, 1, 2)],
                True,
                color=text_color,
                thickness=thickness)

        for b in char_box:
            b = np.array(b)
            c = char_color[text_inx % 2]
            b = b.astype(np.int32)
            cv2.polylines(
                img, [b.reshape(-1, 1, 2)], True, color=c, thickness=thickness)

        label_text = ''.join(txt)
        cv2.putText(img, label_text, (text_box[0, 0], text_box[0, 1] - 2),
                    cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
        text_inx = text_inx + 1

    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img


def tile_image(images):
    """Combined multiple images to one vertically.

    Args:
        images (list[np.ndarray]): Images to be combined.
    """
    assert isinstance(images, list)
    assert len(images) > 0

    for i, _ in enumerate(images):
        if len(images[i].shape) == 2:
            images[i] = cv2.cvtColor(images[i], cv2.COLOR_GRAY2BGR)

    widths = [img.shape[1] for img in images]
    heights = [img.shape[0] for img in images]
    h, w = sum(heights), max(widths)
    vis_img = np.zeros((h, w, 3), dtype=np.uint8)

    offset_y = 0
    for image in images:
        img_h, img_w = image.shape[:2]
        vis_img[offset_y:(offset_y + img_h), 0:img_w, :] = image
        offset_y += img_h

    return vis_img


def imshow_text_label(img,
                      pred_label,
                      gt_label,
                      show=False,
                      win_name='',
                      wait_time=-1,
                      out_file=None):
    """Draw predicted texts and ground truth texts on images.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        pred_label (str): Predicted texts.
        gt_label (str): Ground truth texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str): The filename of the output.
    """
    assert isinstance(img, (np.ndarray, str))
    assert isinstance(pred_label, str)
    assert isinstance(gt_label, str)
    assert isinstance(show, bool)
    assert isinstance(win_name, str)
    assert isinstance(wait_time, int)

    img = mmcv.imread(img)

    src_h, src_w = img.shape[:2]
    resize_height = 64
    resize_width = int(1.0 * src_w / src_h * resize_height)
    img = cv2.resize(img, (resize_width, resize_height))
    h, w = img.shape[:2]

    if is_contain_chinese(pred_label):
        pred_img = draw_texts_by_pil(img, [pred_label], None)
    else:
        pred_img = np.ones((h, w, 3), dtype=np.uint8) * 255
        cv2.putText(pred_img, pred_label, (5, 40), cv2.FONT_HERSHEY_SIMPLEX,
                    0.9, (0, 0, 255), 2)
    images = [pred_img, img]

    if gt_label != '':
        if is_contain_chinese(gt_label):
            gt_img = draw_texts_by_pil(img, [gt_label], None)
        else:
            gt_img = np.ones((h, w, 3), dtype=np.uint8) * 255
            cv2.putText(gt_img, gt_label, (5, 40), cv2.FONT_HERSHEY_SIMPLEX,
                        0.9, (255, 0, 0), 2)
        images.append(gt_img)

    img = tile_image(images)

    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img


def imshow_node(img,
                result,
                boxes,
                idx_to_cls={},
                show=False,
                win_name='',
                wait_time=-1,
                out_file=None):

    img = mmcv.imread(img)
    h, w = img.shape[:2]

    max_value, max_idx = torch.max(result['nodes'].detach().cpu(), -1)
    node_pred_label = max_idx.numpy().tolist()
    node_pred_score = max_value.numpy().tolist()

    texts, text_boxes = [], []
    for i, box in enumerate(boxes):
        new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
                   [box[0], box[3]]]
        Pts = np.array([new_box], np.int32)
        cv2.polylines(
            img, [Pts.reshape((-1, 1, 2))],
            True,
            color=(255, 255, 0),
            thickness=1)
        x_min = int(min([point[0] for point in new_box]))
        y_min = int(min([point[1] for point in new_box]))

        # text
        pred_label = str(node_pred_label[i])
        if pred_label in idx_to_cls:
            pred_label = idx_to_cls[pred_label]
        pred_score = '{:.2f}'.format(node_pred_score[i])
        text = pred_label + '(' + pred_score + ')'
        texts.append(text)

        # text box
        font_size = int(
            min(
                abs(new_box[3][1] - new_box[0][1]),
                abs(new_box[1][0] - new_box[0][0])))
        char_num = len(text)
        text_box = [
            x_min * 2, y_min, x_min * 2 + font_size * char_num, y_min,
            x_min * 2 + font_size * char_num, y_min + font_size, x_min * 2,
            y_min + font_size
        ]
        text_boxes.append(text_box)

    pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255
    pred_img = draw_texts_by_pil(
        pred_img, texts, text_boxes, draw_box=False, on_ori_img=True)

    vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255
    vis_img[:, :w] = img
    vis_img[:, w:] = pred_img

    if show:
        mmcv.imshow(vis_img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(vis_img, out_file)

    return vis_img


def gen_color():
    """Generate BGR color schemes."""
    color_list = [(101, 67, 254), (154, 157, 252), (173, 205, 249),
                  (123, 151, 138), (187, 200, 178), (148, 137, 69),
                  (169, 200, 200), (155, 175, 131), (154, 194, 182),
                  (178, 190, 137), (140, 211, 222), (83, 156, 222)]
    return color_list


def draw_polygons(img, polys):
    """Draw polygons on image.

    Args:
        img (np.ndarray): The original image.
        polys (list[list[float]]): Detected polygons.
    Return:
        out_img (np.ndarray): Visualized image.
    """
    dst_img = img.copy()
    color_list = gen_color()
    out_img = dst_img
    for idx, poly in enumerate(polys):
        poly = np.array(poly).reshape((-1, 1, 2)).astype(np.int32)
        cv2.drawContours(
            img,
            np.array([poly]),
            -1,
            color_list[idx % len(color_list)],
            thickness=cv2.FILLED)
        out_img = cv2.addWeighted(dst_img, 0.5, img, 0.5, 0)
    return out_img


def get_optimal_font_scale(text, width):
    """Get optimal font scale for cv2.putText.

    Args:
        text (str): Text in one box.
        width (int): The box width.
    """
    for scale in reversed(range(0, 60, 1)):
        textSize = cv2.getTextSize(
            text,
            fontFace=cv2.FONT_HERSHEY_SIMPLEX,
            fontScale=scale / 10,
            thickness=1)
        new_width = textSize[0][0]
        if new_width <= width:
            return scale / 10
    return 1


def draw_texts(img, texts, boxes=None, draw_box=True, on_ori_img=False):
    """Draw boxes and texts on empty img.

    Args:
        img (np.ndarray): The original image.
        texts (list[str]): Recognized texts.
        boxes (list[list[float]]): Detected bounding boxes.
        draw_box (bool): Whether draw box or not. If False, draw text only.
        on_ori_img (bool): If True, draw box and text on input image,
            else, on a new empty image.
    Return:
        out_img (np.ndarray): Visualized image.
    """
    color_list = gen_color()
    h, w = img.shape[:2]
    if boxes is None:
        boxes = [[0, 0, w, 0, w, h, 0, h]]
    assert len(texts) == len(boxes)

    if on_ori_img:
        out_img = img
    else:
        out_img = np.ones((h, w, 3), dtype=np.uint8) * 255
    for idx, (box, text) in enumerate(zip(boxes, texts)):
        if draw_box:
            new_box = [[x, y] for x, y in zip(box[0::2], box[1::2])]
            Pts = np.array([new_box], np.int32)
            cv2.polylines(
                out_img, [Pts.reshape((-1, 1, 2))],
                True,
                color=color_list[idx % len(color_list)],
                thickness=1)
        min_x = int(min(box[0::2]))
        max_y = int(
            np.mean(np.array(box[1::2])) + 0.2 *
            (max(box[1::2]) - min(box[1::2])))
        font_scale = get_optimal_font_scale(
            text, int(max(box[0::2]) - min(box[0::2])))
        cv2.putText(out_img, text, (min_x, max_y), cv2.FONT_HERSHEY_SIMPLEX,
                    font_scale, (0, 0, 0), 1)

    return out_img


def draw_texts_by_pil(img,
                      texts,
                      boxes=None,
                      draw_box=True,
                      on_ori_img=False,
                      font_size=None,
                      fill_color=None,
                      draw_pos=None,
                      return_text_size=False):
    """Draw boxes and texts on empty image, especially for Chinese.

    Args:
        img (np.ndarray): The original image.
        texts (list[str]): Recognized texts.
        boxes (list[list[float]]): Detected bounding boxes.
        draw_box (bool): Whether draw box or not. If False, draw text only.
        on_ori_img (bool): If True, draw box and text on input image,
            else on a new empty image.
        font_size (int, optional): Size to create a font object for a font.
        fill_color (tuple(int), optional): Fill color for text.
        draw_pos (list[tuple(int)], optional): Start point to draw each text.
        return_text_size (bool): If True, return the list of text size.

    Returns:
        (np.ndarray, list[tuple]) or np.ndarray: Return a tuple
        ``(out_img, text_sizes)``, where ``out_img`` is the output image
        with texts drawn on it and ``text_sizes`` are the size of drawing
        texts. If ``return_text_size`` is False, only the output image will be
        returned.
    """

    color_list = gen_color()
    h, w = img.shape[:2]
    if boxes is None:
        boxes = [[0, 0, w, 0, w, h, 0, h]]
    if draw_pos is None:
        draw_pos = [None for _ in texts]
    assert len(boxes) == len(texts) == len(draw_pos)

    if fill_color is None:
        fill_color = (0, 0, 0)

    if on_ori_img:
        out_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    else:
        out_img = Image.new('RGB', (w, h), color=(255, 255, 255))
    out_draw = ImageDraw.Draw(out_img)

    text_sizes = []
    for idx, (box, text, ori_point) in enumerate(zip(boxes, texts, draw_pos)):
        if len(text) == 0:
            continue
        min_x, max_x = min(box[0::2]), max(box[0::2])
        min_y, max_y = min(box[1::2]), max(box[1::2])
        color = tuple(list(color_list[idx % len(color_list)])[::-1])
        if draw_box:
            out_draw.line(box, fill=color, width=1)
        dirname, _ = os.path.split(os.path.abspath(__file__))
        font_path = os.path.join(dirname, 'font.TTF')
        if not os.path.exists(font_path):
            url = ('https://download.openmmlab.com/mmocr/data/font.TTF')
            print(f'Downloading {url} ...')
            local_filename, _ = urllib.request.urlretrieve(url)
            shutil.move(local_filename, font_path)
        tmp_font_size = font_size
        if tmp_font_size is None:
            box_width = max(max_x - min_x, max_y - min_y)
            tmp_font_size = int(0.9 * box_width / len(text))
        fnt = ImageFont.truetype(font_path, tmp_font_size)
        if ori_point is None:
            ori_point = (min_x + 1, min_y + 1)
        out_draw.text(ori_point, text, font=fnt, fill=fill_color)
        text_sizes.append(fnt.getsize(text))

    del out_draw

    out_img = cv2.cvtColor(np.asarray(out_img), cv2.COLOR_RGB2BGR)

    if return_text_size:
        return out_img, text_sizes

    return out_img


def is_contain_chinese(check_str):
    """Check whether string contains Chinese or not.

    Args:
        check_str (str): String to be checked.

    Return True if contains Chinese, else False.
    """
    for ch in check_str:
        if u'\u4e00' <= ch <= u'\u9fff':
            return True
    return False


def det_recog_show_result(img, end2end_res, out_file=None):
    """Draw `result`(boxes and texts) on `img`.

    Args:
        img (str or np.ndarray): The image to be displayed.
        end2end_res (dict): Text detect and recognize results.
        out_file (str): Image path where the visualized image should be saved.
    Return:
        out_img (np.ndarray): Visualized image.
    """
    img = mmcv.imread(img)
    boxes, texts = [], []
    for res in end2end_res['result']:
        boxes.append(res['box'])
        texts.append(res['text'])
    box_vis_img = draw_polygons(img, boxes)

    if is_contain_chinese(''.join(texts)):
        text_vis_img = draw_texts_by_pil(img, texts, boxes)
    else:
        text_vis_img = draw_texts(img, texts, boxes)

    h, w = img.shape[:2]
    out_img = np.ones((h, w * 2, 3), dtype=np.uint8)
    out_img[:, :w, :] = box_vis_img
    out_img[:, w:, :] = text_vis_img

    if out_file:
        mmcv.imwrite(out_img, out_file)

    return out_img


def draw_edge_result(img, result, edge_thresh=0.5, keynode_thresh=0.5):
    """Draw text and their relationship on empty images.

    Args:
        img (np.ndarray): The original image.
        result (dict): The result of model forward_test, including:
            - img_metas (list[dict]): List of meta information dictionary.
            - nodes (Tensor): Node prediction with size:
                number_node * node_classes.
            - edges (Tensor): Edge prediction with size: number_edge * 2.
        edge_thresh (float): Score threshold for edge classification.
        keynode_thresh (float): Score threshold for node
            (``key``) classification.

    Returns:
        np.ndarray: The image with key, value and relation drawn on it.
    """

    h, w = img.shape[:2]

    vis_area_width = w // 3 * 2
    vis_area_height = h
    dist_key_to_value = vis_area_width // 2
    dist_pair_to_pair = 30

    bbox_x1 = dist_pair_to_pair
    bbox_y1 = 0

    new_w = vis_area_width
    new_h = vis_area_height
    pred_edge_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * 255

    nodes = result['nodes'].detach().cpu()
    texts = result['img_metas'][0]['ori_texts']
    num_nodes = result['nodes'].size(0)
    edges = result['edges'].detach().cpu()[:, -1].view(num_nodes, num_nodes)

    # (i, j) will be a valid pair
    # either edge_score(node_i->node_j) > edge_thresh
    # or edge_score(node_j->node_i) > edge_thresh
    pairs = (torch.max(edges, edges.T) > edge_thresh).nonzero(as_tuple=True)
    pairs = (pairs[0].numpy().tolist(), pairs[1].numpy().tolist())

    # 1. "for n1, n2 in zip(*pairs) if n1 < n2":
    #     Only (n1, n2) will be included if n1 < n2 but not (n2, n1), to
    #     avoid duplication.
    # 2. "(n1, n2) if nodes[n1, 1] > nodes[n1, 2]":
    #     nodes[n1, 1] is the score that this node is predicted as key,
    #     nodes[n1, 2] is the score that this node is predicted as value.
    #     If nodes[n1, 1] > nodes[n1, 2], n1 will be the index of key,
    #     so that n2 will be the index of value.
    result_pairs = [(n1, n2) if nodes[n1, 1] > nodes[n1, 2] else (n2, n1)
                    for n1, n2 in zip(*pairs) if n1 < n2]

    result_pairs.sort()
    result_pairs_score = [
        torch.max(edges[n1, n2], edges[n2, n1]) for n1, n2 in result_pairs
    ]

    key_current_idx = -1
    pos_current = (-1, -1)
    newline_flag = False

    key_font_size = 15
    value_font_size = 15
    key_font_color = (0, 0, 0)
    value_font_color = (0, 0, 255)
    arrow_color = (0, 0, 255)
    score_color = (0, 255, 0)
    for pair, pair_score in zip(result_pairs, result_pairs_score):
        key_idx = pair[0]
        if nodes[key_idx, 1] < keynode_thresh:
            continue
        if key_idx != key_current_idx:
            # move y-coords down for a new key
            bbox_y1 += 10
            # enlarge blank area to show key-value info
            if newline_flag:
                bbox_x1 += vis_area_width
                tmp_img = np.ones(
                    (new_h, new_w + vis_area_width, 3), dtype=np.uint8) * 255
                tmp_img[:new_h, :new_w] = pred_edge_img
                pred_edge_img = tmp_img
                new_w += vis_area_width
                newline_flag = False
                bbox_y1 = 10
        key_text = texts[key_idx]
        key_pos = (bbox_x1, bbox_y1)
        value_idx = pair[1]
        value_text = texts[value_idx]
        value_pos = (bbox_x1 + dist_key_to_value, bbox_y1)
        if key_idx != key_current_idx:
            # draw text for a new key
            key_current_idx = key_idx
            pred_edge_img, text_sizes = draw_texts_by_pil(
                pred_edge_img, [key_text],
                draw_box=False,
                on_ori_img=True,
                font_size=key_font_size,
                fill_color=key_font_color,
                draw_pos=[key_pos],
                return_text_size=True)
            pos_right_bottom = (key_pos[0] + text_sizes[0][0],
                                key_pos[1] + text_sizes[0][1])
            pos_current = (pos_right_bottom[0] + 5, bbox_y1 + 10)
            pred_edge_img = cv2.arrowedLine(
                pred_edge_img, (pos_right_bottom[0] + 5, bbox_y1 + 10),
                (bbox_x1 + dist_key_to_value - 5, bbox_y1 + 10), arrow_color,
                1)
            score_pos_x = int(
                (pos_right_bottom[0] + bbox_x1 + dist_key_to_value) / 2.)
            score_pos_y = bbox_y1 + 10 - int(key_font_size * 0.3)
        else:
            # draw arrow from key to value
            if newline_flag:
                tmp_img = np.ones((new_h + dist_pair_to_pair, new_w, 3),
                                  dtype=np.uint8) * 255
                tmp_img[:new_h, :new_w] = pred_edge_img
                pred_edge_img = tmp_img
                new_h += dist_pair_to_pair
            pred_edge_img = cv2.arrowedLine(pred_edge_img, pos_current,
                                            (bbox_x1 + dist_key_to_value - 5,
                                             bbox_y1 + 10), arrow_color, 1)
            score_pos_x = int(
                (pos_current[0] + bbox_x1 + dist_key_to_value - 5) / 2.)
            score_pos_y = int((pos_current[1] + bbox_y1 + 10) / 2.)
        # draw edge score
        cv2.putText(pred_edge_img, '{:.2f}'.format(pair_score),
                    (score_pos_x, score_pos_y), cv2.FONT_HERSHEY_COMPLEX, 0.4,
                    score_color)
        # draw text for value
        pred_edge_img = draw_texts_by_pil(
            pred_edge_img, [value_text],
            draw_box=False,
            on_ori_img=True,
            font_size=value_font_size,
            fill_color=value_font_color,
            draw_pos=[value_pos],
            return_text_size=False)
        bbox_y1 += dist_pair_to_pair
        if bbox_y1 + dist_pair_to_pair >= new_h:
            newline_flag = True

    return pred_edge_img


def imshow_edge(img,
                result,
                boxes,
                show=False,
                win_name='',
                wait_time=-1,
                out_file=None):
    """Display the prediction results of the nodes and edges of the KIE model.

    Args:
        img (np.ndarray): The original image.
        result (dict): The result of model forward_test, including:
            - img_metas (list[dict]): List of meta information dictionary.
            - nodes (Tensor): Node prediction with size: \
                number_node * node_classes.
            - edges (Tensor): Edge prediction with size: number_edge * 2.
        boxes (list): The text boxes corresponding to the nodes.
        show (bool): Whether to show the image. Default: False.
        win_name (str): The window name. Default: ''
        wait_time (float): Value of waitKey param. Default: 0.
        out_file (str or None): The filename to write the image.
            Default: None.

    Returns:
        np.ndarray: The image with key, value and relation drawn on it.
    """
    img = mmcv.imread(img)
    h, w = img.shape[:2]
    color_list = gen_color()

    for i, box in enumerate(boxes):
        new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
                   [box[0], box[3]]]
        Pts = np.array([new_box], np.int32)
        cv2.polylines(
            img, [Pts.reshape((-1, 1, 2))],
            True,
            color=color_list[i % len(color_list)],
            thickness=1)

    pred_img_h = h
    pred_img_w = w

    pred_edge_img = draw_edge_result(img, result)
    pred_img_h = max(pred_img_h, pred_edge_img.shape[0])
    pred_img_w += pred_edge_img.shape[1]

    vis_img = np.zeros((pred_img_h, pred_img_w, 3), dtype=np.uint8)
    vis_img[:h, :w] = img
    vis_img[:, w:] = 255

    height_t, width_t = pred_edge_img.shape[:2]
    vis_img[:height_t, w:(w + width_t)] = pred_edge_img

    if show:
        mmcv.imshow(vis_img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(vis_img, out_file)
        res_dic = {
            'boxes': boxes,
            'nodes': result['nodes'].detach().cpu(),
            'edges': result['edges'].detach().cpu(),
            'metas': result['img_metas'][0]
        }
        mmcv.dump(res_dic, f'{out_file}_res.pkl')

    return vis_img