Spaces:
Runtime error
Runtime error
File size: 24,031 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from lanms import merge_quadrangle_n9 as la_nms
from mmdet.core import BitmapMasks
from mmdet.datasets.builder import PIPELINES
from numpy.linalg import norm
import mmocr.utils.check_argument as check_argument
from .textsnake_targets import TextSnakeTargets
@PIPELINES.register_module()
class DRRGTargets(TextSnakeTargets):
"""Generate the ground truth targets of DRRG: Deep Relational Reasoning
Graph Network for Arbitrary Shape Text Detection.
[https://arxiv.org/abs/2003.07493]. This code was partially adapted from
https://github.com/GXYM/DRRG licensed under the MIT license.
Args:
orientation_thr (float): The threshold for distinguishing between
head edge and tail edge among the horizontal and vertical edges
of a quadrangle.
resample_step (float): The step size for resampling the text center
line.
num_min_comps (int): The minimum number of text components, which
should be larger than k_hop1 mentioned in paper.
num_max_comps (int): The maximum number of text components.
min_width (float): The minimum width of text components.
max_width (float): The maximum width of text components.
center_region_shrink_ratio (float): The shrink ratio of text center
regions.
comp_shrink_ratio (float): The shrink ratio of text components.
comp_w_h_ratio (float): The width to height ratio of text components.
min_rand_half_height(float): The minimum half-height of random text
components.
max_rand_half_height (float): The maximum half-height of random
text components.
jitter_level (float): The jitter level of text component geometric
features.
"""
def __init__(self,
orientation_thr=2.0,
resample_step=8.0,
num_min_comps=9,
num_max_comps=600,
min_width=8.0,
max_width=24.0,
center_region_shrink_ratio=0.3,
comp_shrink_ratio=1.0,
comp_w_h_ratio=0.3,
text_comp_nms_thr=0.25,
min_rand_half_height=8.0,
max_rand_half_height=24.0,
jitter_level=0.2):
super().__init__()
self.orientation_thr = orientation_thr
self.resample_step = resample_step
self.num_max_comps = num_max_comps
self.num_min_comps = num_min_comps
self.min_width = min_width
self.max_width = max_width
self.center_region_shrink_ratio = center_region_shrink_ratio
self.comp_shrink_ratio = comp_shrink_ratio
self.comp_w_h_ratio = comp_w_h_ratio
self.text_comp_nms_thr = text_comp_nms_thr
self.min_rand_half_height = min_rand_half_height
self.max_rand_half_height = max_rand_half_height
self.jitter_level = jitter_level
def dist_point2line(self, point, line):
assert isinstance(line, tuple)
point1, point2 = line
d = abs(np.cross(point2 - point1, point - point1)) / (
norm(point2 - point1) + 1e-8)
return d
def draw_center_region_maps(self, top_line, bot_line, center_line,
center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map,
region_shrink_ratio):
"""Draw attributes of text components on text center regions.
Args:
top_line (ndarray): The points composing the top side lines of text
polygons.
bot_line (ndarray): The points composing bottom side lines of text
polygons.
center_line (ndarray): The points composing the center lines of
text instances.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The map on which the distance from points
to top side lines will be drawn for each pixel in text center
regions.
bot_height_map (ndarray): The map on which the distance from points
to bottom side lines will be drawn for each pixel in text
center regions.
sin_map (ndarray): The map of vector_sin(top_point - bot_point)
that will be drawn on text center regions.
cos_map (ndarray): The map of vector_cos(top_point - bot_point)
will be drawn on text center regions.
region_shrink_ratio (float): The shrink ratio of text center
regions.
"""
assert top_line.shape == bot_line.shape == center_line.shape
assert (center_region_mask.shape == top_height_map.shape ==
bot_height_map.shape == sin_map.shape == cos_map.shape)
assert isinstance(region_shrink_ratio, float)
h, w = center_region_mask.shape
for i in range(0, len(center_line) - 1):
top_mid_point = (top_line[i] + top_line[i + 1]) / 2
bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2
sin_theta = self.vector_sin(top_mid_point - bot_mid_point)
cos_theta = self.vector_cos(top_mid_point - bot_mid_point)
tl = center_line[i] + (top_line[i] -
center_line[i]) * region_shrink_ratio
tr = center_line[i + 1] + (
top_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
br = center_line[i + 1] + (
bot_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
bl = center_line[i] + (bot_line[i] -
center_line[i]) * region_shrink_ratio
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32)
cv2.fillPoly(center_region_mask, [current_center_box], color=1)
cv2.fillPoly(sin_map, [current_center_box], color=sin_theta)
cv2.fillPoly(cos_map, [current_center_box], color=cos_theta)
current_center_box[:, 0] = np.clip(current_center_box[:, 0], 0,
w - 1)
current_center_box[:, 1] = np.clip(current_center_box[:, 1], 0,
h - 1)
min_coord = np.min(current_center_box, axis=0).astype(np.int32)
max_coord = np.max(current_center_box, axis=0).astype(np.int32)
current_center_box = current_center_box - min_coord
box_sz = (max_coord - min_coord + 1)
center_box_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8)
cv2.fillPoly(center_box_mask, [current_center_box], color=1)
inds = np.argwhere(center_box_mask > 0)
inds = inds + (min_coord[1], min_coord[0])
inds_xy = np.fliplr(inds)
top_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line(
inds_xy, (top_line[i], top_line[i + 1]))
bot_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line(
inds_xy, (bot_line[i], bot_line[i + 1]))
def generate_center_mask_attrib_maps(self, img_size, text_polys):
"""Generate text center region masks and geometric attribute maps.
Args:
img_size (tuple): The image size (height, width).
text_polys (list[list[ndarray]]): The list of text polygons.
Returns:
center_lines (list): The list of text center lines.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The map on which the distance from points
to top side lines will be drawn for each pixel in text center
regions.
bot_height_map (ndarray): The map on which the distance from points
to bottom side lines will be drawn for each pixel in text
center regions.
sin_map (ndarray): The sin(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
cos_map (ndarray): The cos(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
"""
assert isinstance(img_size, tuple)
assert check_argument.is_2dlist(text_polys)
h, w = img_size
center_lines = []
center_region_mask = np.zeros((h, w), np.uint8)
top_height_map = np.zeros((h, w), dtype=np.float32)
bot_height_map = np.zeros((h, w), dtype=np.float32)
sin_map = np.zeros((h, w), dtype=np.float32)
cos_map = np.zeros((h, w), dtype=np.float32)
for poly in text_polys:
assert len(poly) == 1
polygon_points = poly[0].reshape(-1, 2)
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
resampled_top_line, resampled_bot_line = self.resample_sidelines(
top_line, bot_line, self.resample_step)
resampled_bot_line = resampled_bot_line[::-1]
center_line = (resampled_top_line + resampled_bot_line) / 2
if self.vector_slope(center_line[-1] - center_line[0]) > 2:
if (center_line[-1] - center_line[0])[1] < 0:
center_line = center_line[::-1]
resampled_top_line = resampled_top_line[::-1]
resampled_bot_line = resampled_bot_line[::-1]
else:
if (center_line[-1] - center_line[0])[0] < 0:
center_line = center_line[::-1]
resampled_top_line = resampled_top_line[::-1]
resampled_bot_line = resampled_bot_line[::-1]
line_head_shrink_len = np.clip(
(norm(top_line[0] - bot_line[0]) * self.comp_w_h_ratio),
self.min_width, self.max_width) / 2
line_tail_shrink_len = np.clip(
(norm(top_line[-1] - bot_line[-1]) * self.comp_w_h_ratio),
self.min_width, self.max_width) / 2
num_head_shrink = int(line_head_shrink_len // self.resample_step)
num_tail_shrink = int(line_tail_shrink_len // self.resample_step)
if len(center_line) > num_head_shrink + num_tail_shrink + 2:
center_line = center_line[num_head_shrink:len(center_line) -
num_tail_shrink]
resampled_top_line = resampled_top_line[
num_head_shrink:len(resampled_top_line) - num_tail_shrink]
resampled_bot_line = resampled_bot_line[
num_head_shrink:len(resampled_bot_line) - num_tail_shrink]
center_lines.append(center_line.astype(np.int32))
self.draw_center_region_maps(resampled_top_line,
resampled_bot_line, center_line,
center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map,
self.center_region_shrink_ratio)
return (center_lines, center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map)
def generate_rand_comp_attribs(self, num_rand_comps, center_sample_mask):
"""Generate random text components and their attributes to ensure the
the number of text components in an image is larger than k_hop1, which
is the number of one hop neighbors in KNN graph.
Args:
num_rand_comps (int): The number of random text components.
center_sample_mask (ndarray): The region mask for sampling text
component centers .
Returns:
rand_comp_attribs (ndarray): The random text component attributes
(x, y, h, w, cos, sin, comp_label=0).
"""
assert isinstance(num_rand_comps, int)
assert num_rand_comps > 0
assert center_sample_mask.ndim == 2
h, w = center_sample_mask.shape
max_rand_half_height = self.max_rand_half_height
min_rand_half_height = self.min_rand_half_height
max_rand_height = max_rand_half_height * 2
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio,
self.min_width, self.max_width)
margin = int(
np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1
if 2 * margin + 1 > min(h, w):
assert min(h, w) > (np.sqrt(2) * (self.min_width + 1))
max_rand_half_height = max(min(h, w) / 4, self.min_width / 2 + 1)
min_rand_half_height = max(max_rand_half_height / 4,
self.min_width / 2)
max_rand_height = max_rand_half_height * 2
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio,
self.min_width, self.max_width)
margin = int(
np.sqrt((max_rand_height / 2)**2 +
(max_rand_width / 2)**2)) + 1
inner_center_sample_mask = np.zeros_like(center_sample_mask)
inner_center_sample_mask[margin:h - margin, margin:w - margin] = \
center_sample_mask[margin:h - margin, margin:w - margin]
kernel_size = int(np.clip(max_rand_half_height, 7, 21))
inner_center_sample_mask = cv2.erode(
inner_center_sample_mask,
np.ones((kernel_size, kernel_size), np.uint8))
center_candidates = np.argwhere(inner_center_sample_mask > 0)
num_center_candidates = len(center_candidates)
sample_inds = np.random.choice(num_center_candidates, num_rand_comps)
rand_centers = center_candidates[sample_inds]
rand_top_height = np.random.randint(
min_rand_half_height,
max_rand_half_height,
size=(len(rand_centers), 1))
rand_bot_height = np.random.randint(
min_rand_half_height,
max_rand_half_height,
size=(len(rand_centers), 1))
rand_cos = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
rand_sin = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
scale = np.sqrt(1.0 / (rand_cos**2 + rand_sin**2 + 1e-8))
rand_cos = rand_cos * scale
rand_sin = rand_sin * scale
height = (rand_top_height + rand_bot_height)
width = np.clip(height * self.comp_w_h_ratio, self.min_width,
self.max_width)
rand_comp_attribs = np.hstack([
rand_centers[:, ::-1], height, width, rand_cos, rand_sin,
np.zeros_like(rand_sin)
]).astype(np.float32)
return rand_comp_attribs
def jitter_comp_attribs(self, comp_attribs, jitter_level):
"""Jitter text components attributes.
Args:
comp_attribs (ndarray): The text component attributes.
jitter_level (float): The jitter level of text components
attributes.
Returns:
jittered_comp_attribs (ndarray): The jittered text component
attributes (x, y, h, w, cos, sin, comp_label).
"""
assert comp_attribs.shape[1] == 7
assert comp_attribs.shape[0] > 0
assert isinstance(jitter_level, float)
x = comp_attribs[:, 0].reshape((-1, 1))
y = comp_attribs[:, 1].reshape((-1, 1))
h = comp_attribs[:, 2].reshape((-1, 1))
w = comp_attribs[:, 3].reshape((-1, 1))
cos = comp_attribs[:, 4].reshape((-1, 1))
sin = comp_attribs[:, 5].reshape((-1, 1))
comp_labels = comp_attribs[:, 6].reshape((-1, 1))
x += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * (h * np.abs(cos) + w * np.abs(sin)) * jitter_level
y += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * (h * np.abs(sin) + w * np.abs(cos)) * jitter_level
h += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * h * jitter_level
w += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * w * jitter_level
cos += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * 2 * jitter_level
sin += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * 2 * jitter_level
scale = np.sqrt(1.0 / (cos**2 + sin**2 + 1e-8))
cos = cos * scale
sin = sin * scale
jittered_comp_attribs = np.hstack([x, y, h, w, cos, sin, comp_labels])
return jittered_comp_attribs
def generate_comp_attribs(self, center_lines, text_mask,
center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map):
"""Generate text component attributes.
Args:
center_lines (list[ndarray]): The list of text center lines .
text_mask (ndarray): The text region mask.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The map on which the distance from points
to top side lines will be drawn for each pixel in text center
regions.
bot_height_map (ndarray): The map on which the distance from points
to bottom side lines will be drawn for each pixel in text
center regions.
sin_map (ndarray): The sin(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
cos_map (ndarray): The cos(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
Returns:
pad_comp_attribs (ndarray): The padded text component attributes
of a fixed size.
"""
assert isinstance(center_lines, list)
assert (text_mask.shape == center_region_mask.shape ==
top_height_map.shape == bot_height_map.shape == sin_map.shape
== cos_map.shape)
center_lines_mask = np.zeros_like(center_region_mask)
cv2.polylines(center_lines_mask, center_lines, 0, 1, 1)
center_lines_mask = center_lines_mask * center_region_mask
comp_centers = np.argwhere(center_lines_mask > 0)
y = comp_centers[:, 0]
x = comp_centers[:, 1]
top_height = top_height_map[y, x].reshape(
(-1, 1)) * self.comp_shrink_ratio
bot_height = bot_height_map[y, x].reshape(
(-1, 1)) * self.comp_shrink_ratio
sin = sin_map[y, x].reshape((-1, 1))
cos = cos_map[y, x].reshape((-1, 1))
top_mid_points = comp_centers + np.hstack(
[top_height * sin, top_height * cos])
bot_mid_points = comp_centers - np.hstack(
[bot_height * sin, bot_height * cos])
width = (top_height + bot_height) * self.comp_w_h_ratio
width = np.clip(width, self.min_width, self.max_width)
r = width / 2
tl = top_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos])
tr = top_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos])
br = bot_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos])
bl = bot_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos])
text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32)
score = np.ones((text_comps.shape[0], 1), dtype=np.float32)
text_comps = np.hstack([text_comps, score])
text_comps = la_nms(text_comps, self.text_comp_nms_thr)
if text_comps.shape[0] >= 1:
img_h, img_w = center_region_mask.shape
text_comps[:, 0:8:2] = np.clip(text_comps[:, 0:8:2], 0, img_w - 1)
text_comps[:, 1:8:2] = np.clip(text_comps[:, 1:8:2], 0, img_h - 1)
comp_centers = np.mean(
text_comps[:, 0:8].reshape((-1, 4, 2)),
axis=1).astype(np.int32)
x = comp_centers[:, 0]
y = comp_centers[:, 1]
height = (top_height_map[y, x] + bot_height_map[y, x]).reshape(
(-1, 1))
width = np.clip(height * self.comp_w_h_ratio, self.min_width,
self.max_width)
cos = cos_map[y, x].reshape((-1, 1))
sin = sin_map[y, x].reshape((-1, 1))
_, comp_label_mask = cv2.connectedComponents(
center_region_mask, connectivity=8)
comp_labels = comp_label_mask[y, x].reshape(
(-1, 1)).astype(np.float32)
x = x.reshape((-1, 1)).astype(np.float32)
y = y.reshape((-1, 1)).astype(np.float32)
comp_attribs = np.hstack(
[x, y, height, width, cos, sin, comp_labels])
comp_attribs = self.jitter_comp_attribs(comp_attribs,
self.jitter_level)
if comp_attribs.shape[0] < self.num_min_comps:
num_rand_comps = self.num_min_comps - comp_attribs.shape[0]
rand_comp_attribs = self.generate_rand_comp_attribs(
num_rand_comps, 1 - text_mask)
comp_attribs = np.vstack([comp_attribs, rand_comp_attribs])
else:
comp_attribs = self.generate_rand_comp_attribs(
self.num_min_comps, 1 - text_mask)
num_comps = (
np.ones((comp_attribs.shape[0], 1), dtype=np.float32) *
comp_attribs.shape[0])
comp_attribs = np.hstack([num_comps, comp_attribs])
if comp_attribs.shape[0] > self.num_max_comps:
comp_attribs = comp_attribs[:self.num_max_comps, :]
comp_attribs[:, 0] = self.num_max_comps
pad_comp_attribs = np.zeros(
(self.num_max_comps, comp_attribs.shape[1]), dtype=np.float32)
pad_comp_attribs[:comp_attribs.shape[0], :] = comp_attribs
return pad_comp_attribs
def generate_targets(self, results):
"""Generate the gt targets for DRRG.
Args:
results (dict): The input result dictionary.
Returns:
results (dict): The output result dictionary.
"""
assert isinstance(results, dict)
polygon_masks = results['gt_masks'].masks
polygon_masks_ignore = results['gt_masks_ignore'].masks
h, w, _ = results['img_shape']
gt_text_mask = self.generate_text_region_mask((h, w), polygon_masks)
gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore)
(center_lines, gt_center_region_mask, gt_top_height_map,
gt_bot_height_map, gt_sin_map,
gt_cos_map) = self.generate_center_mask_attrib_maps((h, w),
polygon_masks)
gt_comp_attribs = self.generate_comp_attribs(center_lines,
gt_text_mask,
gt_center_region_mask,
gt_top_height_map,
gt_bot_height_map,
gt_sin_map, gt_cos_map)
results['mask_fields'].clear() # rm gt_masks encoded by polygons
mapping = {
'gt_text_mask': gt_text_mask,
'gt_center_region_mask': gt_center_region_mask,
'gt_mask': gt_mask,
'gt_top_height_map': gt_top_height_map,
'gt_bot_height_map': gt_bot_height_map,
'gt_sin_map': gt_sin_map,
'gt_cos_map': gt_cos_map
}
for key, value in mapping.items():
value = value if isinstance(value, list) else [value]
results[key] = BitmapMasks(value, h, w)
results['mask_fields'].append(key)
results['gt_comp_attribs'] = gt_comp_attribs
return results
|