Spaces:
Runtime error
Runtime error
File size: 19,532 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
# ------------------------------------------------------------------------------
# Adapted from https://github.com/lonePatient/BERT-NER-Pytorch
# Original licence: Copyright (c) 2020 Weitang Liu, under the MIT License.
# ------------------------------------------------------------------------------
import math
import torch
import torch.nn as nn
from mmocr.models.builder import build_activation_layer
class BertModel(nn.Module):
"""Implement Bert model for named entity recognition task.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch
Args:
num_hidden_layers (int): The number of hidden layers.
initializer_range (float):
vocab_size (int): Number of words supported.
hidden_size (int): Hidden size.
max_position_embeddings (int): Max positionsembedding size.
type_vocab_size (int): The size of type_vocab.
layer_norm_eps (float): eps.
hidden_dropout_prob (float): The dropout probability of hidden layer.
output_attentions (bool): Whether use the attentions in output
output_hidden_states (bool): Whether use the hidden_states in output.
num_attention_heads (int): The number of attention heads.
attention_probs_dropout_prob (float): The dropout probability
for the attention probabilities normalized from
the attention scores.
intermediate_size (int): The size of intermediate layer.
hidden_act_cfg (str): hidden layer activation
"""
def __init__(self,
num_hidden_layers=12,
initializer_range=0.02,
vocab_size=21128,
hidden_size=768,
max_position_embeddings=128,
type_vocab_size=2,
layer_norm_eps=1e-12,
hidden_dropout_prob=0.1,
output_attentions=False,
output_hidden_states=False,
num_attention_heads=12,
attention_probs_dropout_prob=0.1,
intermediate_size=3072,
hidden_act_cfg=dict(type='GeluNew')):
super().__init__()
self.embeddings = BertEmbeddings(
vocab_size=vocab_size,
hidden_size=hidden_size,
max_position_embeddings=max_position_embeddings,
type_vocab_size=type_vocab_size,
layer_norm_eps=layer_norm_eps,
hidden_dropout_prob=hidden_dropout_prob)
self.encoder = BertEncoder(
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
num_hidden_layers=num_hidden_layers,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
attention_probs_dropout_prob=attention_probs_dropout_prob,
layer_norm_eps=layer_norm_eps,
hidden_dropout_prob=hidden_dropout_prob,
intermediate_size=intermediate_size,
hidden_act_cfg=hidden_act_cfg)
self.pooler = BertPooler(hidden_size=hidden_size)
self.num_hidden_layers = num_hidden_layers
self.initializer_range = initializer_range
self.init_weights()
def _resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.embeddings.word_embeddings
new_embeddings = self._get_resized_embeddings(old_embeddings,
new_num_tokens)
self.embeddings.word_embeddings = new_embeddings
return self.embeddings.word_embeddings
def forward(self,
input_ids,
attention_masks=None,
token_type_ids=None,
position_ids=None,
head_mask=None):
if attention_masks is None:
attention_masks = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
attention_masks = attention_masks[:, None, None]
attention_masks = attention_masks.to(
dtype=next(self.parameters()).dtype)
attention_masks = (1.0 - attention_masks) * -10000.0
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask[None, None, :, None, None]
elif head_mask.dim() == 2:
head_mask = head_mask[None, :, None, None]
head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
else:
head_mask = [None] * self.num_hidden_layers
embedding_output = self.embeddings(
input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids)
sequence_output, *encoder_outputs = self.encoder(
embedding_output, attention_masks, head_mask=head_mask)
# sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
# add hidden_states and attentions if they are here
# sequence_output, pooled_output, (hidden_states), (attentions)
outputs = (
sequence_output,
pooled_output,
) + tuple(encoder_outputs)
return outputs
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which
# uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.initializer_range)
elif isinstance(module, torch.nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def init_weights(self):
"""Initialize and prunes weights if needed."""
# Initialize weights
self.apply(self._init_weights)
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
Args:
vocab_size (int): Number of words supported.
hidden_size (int): Hidden size.
max_position_embeddings (int): Max positions embedding size.
type_vocab_size (int): The size of type_vocab.
layer_norm_eps (float): eps.
hidden_dropout_prob (float): The dropout probability of hidden layer.
"""
def __init__(self,
vocab_size=21128,
hidden_size=768,
max_position_embeddings=128,
type_vocab_size=2,
layer_norm_eps=1e-12,
hidden_dropout_prob=0.1):
super().__init__()
self.word_embeddings = nn.Embedding(
vocab_size, hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(max_position_embeddings,
hidden_size)
self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
# self.LayerNorm is not snake-cased to stick with
# TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(
seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_emb = self.word_embeddings(input_ids)
position_emb = self.position_embeddings(position_ids)
token_type_emb = self.token_type_embeddings(token_type_ids)
embeddings = words_emb + position_emb + token_type_emb
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertEncoder(nn.Module):
"""The code is adapted from https://github.com/lonePatient/BERT-NER-
Pytorch."""
def __init__(self,
output_attentions=False,
output_hidden_states=False,
num_hidden_layers=12,
hidden_size=768,
num_attention_heads=12,
attention_probs_dropout_prob=0.1,
layer_norm_eps=1e-12,
hidden_dropout_prob=0.1,
intermediate_size=3072,
hidden_act_cfg=dict(type='GeluNew')):
super().__init__()
self.output_attentions = output_attentions
self.output_hidden_states = output_hidden_states
self.layer = nn.ModuleList([
BertLayer(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
output_attentions=output_attentions,
attention_probs_dropout_prob=attention_probs_dropout_prob,
layer_norm_eps=layer_norm_eps,
hidden_dropout_prob=hidden_dropout_prob,
intermediate_size=intermediate_size,
hidden_act_cfg=hidden_act_cfg)
for _ in range(num_hidden_layers)
])
def forward(self, hidden_states, attention_mask=None, head_mask=None):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
layer_outputs = layer_module(hidden_states, attention_mask,
head_mask[i])
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1], )
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
outputs = (hidden_states, )
if self.output_hidden_states:
outputs = outputs + (all_hidden_states, )
if self.output_attentions:
outputs = outputs + (all_attentions, )
# last-layer hidden state, (all hidden states), (all attentions)
return outputs
class BertPooler(nn.Module):
def __init__(self, hidden_size=768):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertLayer(nn.Module):
"""Bert layer.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
"""
def __init__(self,
hidden_size=768,
num_attention_heads=12,
output_attentions=False,
attention_probs_dropout_prob=0.1,
layer_norm_eps=1e-12,
hidden_dropout_prob=0.1,
intermediate_size=3072,
hidden_act_cfg=dict(type='GeluNew')):
super().__init__()
self.attention = BertAttention(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
output_attentions=output_attentions,
attention_probs_dropout_prob=attention_probs_dropout_prob,
layer_norm_eps=layer_norm_eps,
hidden_dropout_prob=hidden_dropout_prob)
self.intermediate = BertIntermediate(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
hidden_act_cfg=hidden_act_cfg)
self.output = BertOutput(
intermediate_size=intermediate_size,
hidden_size=hidden_size,
layer_norm_eps=layer_norm_eps,
hidden_dropout_prob=hidden_dropout_prob)
def forward(self, hidden_states, attention_mask=None, head_mask=None):
attention_outputs = self.attention(hidden_states, attention_mask,
head_mask)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output, ) + attention_outputs[
1:] # add attentions if we output them
return outputs
class BertSelfAttention(nn.Module):
"""Bert self attention module.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
"""
def __init__(self,
hidden_size=768,
num_attention_heads=12,
output_attentions=False,
attention_probs_dropout_prob=0.1):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError('The hidden size (%d) is not a multiple of'
'the number of attention heads (%d)' %
(hidden_size, num_attention_heads))
self.output_attentions = output_attentions
self.num_attention_heads = num_attention_heads
self.att_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.att_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads,
self.att_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, head_mask=None):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and
# "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer,
key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.att_head_size)
if attention_mask is not None:
# Apply the attention mask is precomputed for
# all layers in BertModel forward() function.
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to.
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (
self.all_head_size, )
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer,
attention_probs) if self.output_attentions else (
context_layer, )
return outputs
class BertSelfOutput(nn.Module):
"""Bert self output.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
"""
def __init__(self,
hidden_size=768,
layer_norm_eps=1e-12,
hidden_dropout_prob=0.1):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
"""Bert Attention module implementation.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
"""
def __init__(self,
hidden_size=768,
num_attention_heads=12,
output_attentions=False,
attention_probs_dropout_prob=0.1,
layer_norm_eps=1e-12,
hidden_dropout_prob=0.1):
super().__init__()
self.self = BertSelfAttention(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
output_attentions=output_attentions,
attention_probs_dropout_prob=attention_probs_dropout_prob)
self.output = BertSelfOutput(
hidden_size=hidden_size,
layer_norm_eps=layer_norm_eps,
hidden_dropout_prob=hidden_dropout_prob)
def forward(self, input_tensor, attention_mask=None, head_mask=None):
self_outputs = self.self(input_tensor, attention_mask, head_mask)
attention_output = self.output(self_outputs[0], input_tensor)
outputs = (attention_output,
) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
"""Bert BertIntermediate module implementation.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
"""
def __init__(self,
hidden_size=768,
intermediate_size=3072,
hidden_act_cfg=dict(type='GeluNew')):
super().__init__()
self.dense = nn.Linear(hidden_size, intermediate_size)
self.intermediate_act_fn = build_activation_layer(hidden_act_cfg)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
"""Bert output module.
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch.
"""
def __init__(self,
intermediate_size=3072,
hidden_size=768,
layer_norm_eps=1e-12,
hidden_dropout_prob=0.1):
super().__init__()
self.dense = nn.Linear(intermediate_size, hidden_size)
self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|