Spaces:
Runtime error
Runtime error
File size: 7,760 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from mmdet.core import BitmapMasks
from mmdet.datasets.builder import PIPELINES
import mmocr.utils.check_argument as check_argument
from mmocr.models.builder import build_convertor
@PIPELINES.register_module()
class OCRSegTargets:
"""Generate gt shrunk kernels for segmentation based OCR framework.
Args:
label_convertor (dict): Dictionary to construct label_convertor
to convert char to index.
attn_shrink_ratio (float): The area shrunk ratio
between attention kernels and gt text masks.
seg_shrink_ratio (float): The area shrunk ratio
between segmentation kernels and gt text masks.
box_type (str): Character box type, should be either
'char_rects' or 'char_quads', with 'char_rects'
for rectangle with ``xyxy`` style and 'char_quads'
for quadrangle with ``x1y1x2y2x3y3x4y4`` style.
"""
def __init__(self,
label_convertor=None,
attn_shrink_ratio=0.5,
seg_shrink_ratio=0.25,
box_type='char_rects',
pad_val=255):
assert isinstance(attn_shrink_ratio, float)
assert isinstance(seg_shrink_ratio, float)
assert 0. < attn_shrink_ratio < 1.0
assert 0. < seg_shrink_ratio < 1.0
assert label_convertor is not None
assert box_type in ('char_rects', 'char_quads')
self.attn_shrink_ratio = attn_shrink_ratio
self.seg_shrink_ratio = seg_shrink_ratio
self.label_convertor = build_convertor(label_convertor)
self.box_type = box_type
self.pad_val = pad_val
def shrink_char_quad(self, char_quad, shrink_ratio):
"""Shrink char box in style of quadrangle.
Args:
char_quad (list[float]): Char box with format
[x1, y1, x2, y2, x3, y3, x4, y4].
shrink_ratio (float): The area shrunk ratio
between gt kernels and gt text masks.
"""
points = [[char_quad[0], char_quad[1]], [char_quad[2], char_quad[3]],
[char_quad[4], char_quad[5]], [char_quad[6], char_quad[7]]]
shrink_points = []
for p_idx, point in enumerate(points):
p1 = points[(p_idx + 3) % 4]
p2 = points[(p_idx + 1) % 4]
dist1 = self.l2_dist_two_points(p1, point)
dist2 = self.l2_dist_two_points(p2, point)
min_dist = min(dist1, dist2)
v1 = [p1[0] - point[0], p1[1] - point[1]]
v2 = [p2[0] - point[0], p2[1] - point[1]]
temp_dist1 = (shrink_ratio * min_dist /
dist1) if min_dist != 0 else 0.
temp_dist2 = (shrink_ratio * min_dist /
dist2) if min_dist != 0 else 0.
v1 = [temp * temp_dist1 for temp in v1]
v2 = [temp * temp_dist2 for temp in v2]
shrink_point = [
round(point[0] + v1[0] + v2[0]),
round(point[1] + v1[1] + v2[1])
]
shrink_points.append(shrink_point)
poly = np.array(shrink_points)
return poly
def shrink_char_rect(self, char_rect, shrink_ratio):
"""Shrink char box in style of rectangle.
Args:
char_rect (list[float]): Char box with format
[x_min, y_min, x_max, y_max].
shrink_ratio (float): The area shrunk ratio
between gt kernels and gt text masks.
"""
x_min, y_min, x_max, y_max = char_rect
w = x_max - x_min
h = y_max - y_min
x_min_s = round((x_min + x_max - w * shrink_ratio) / 2)
y_min_s = round((y_min + y_max - h * shrink_ratio) / 2)
x_max_s = round((x_min + x_max + w * shrink_ratio) / 2)
y_max_s = round((y_min + y_max + h * shrink_ratio) / 2)
poly = np.array([[x_min_s, y_min_s], [x_max_s, y_min_s],
[x_max_s, y_max_s], [x_min_s, y_max_s]])
return poly
def generate_kernels(self,
resize_shape,
pad_shape,
char_boxes,
char_inds,
shrink_ratio=0.5,
binary=True):
"""Generate char instance kernels for one shrink ratio.
Args:
resize_shape (tuple(int, int)): Image size (height, width)
after resizing.
pad_shape (tuple(int, int)): Image size (height, width)
after padding.
char_boxes (list[list[float]]): The list of char polygons.
char_inds (list[int]): List of char indexes.
shrink_ratio (float): The shrink ratio of kernel.
binary (bool): If True, return binary ndarray
containing 0 & 1 only.
Returns:
char_kernel (ndarray): The text kernel mask of (height, width).
"""
assert isinstance(resize_shape, tuple)
assert isinstance(pad_shape, tuple)
assert check_argument.is_2dlist(char_boxes)
assert check_argument.is_type_list(char_inds, int)
assert isinstance(shrink_ratio, float)
assert isinstance(binary, bool)
char_kernel = np.zeros(pad_shape, dtype=np.int32)
char_kernel[:resize_shape[0], resize_shape[1]:] = self.pad_val
for i, char_box in enumerate(char_boxes):
if self.box_type == 'char_rects':
poly = self.shrink_char_rect(char_box, shrink_ratio)
elif self.box_type == 'char_quads':
poly = self.shrink_char_quad(char_box, shrink_ratio)
fill_value = 1 if binary else char_inds[i]
cv2.fillConvexPoly(char_kernel, poly.astype(np.int32),
(fill_value))
return char_kernel
def l2_dist_two_points(self, p1, p2):
return ((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5
def __call__(self, results):
img_shape = results['img_shape']
resize_shape = results['resize_shape']
h_scale = 1.0 * resize_shape[0] / img_shape[0]
w_scale = 1.0 * resize_shape[1] / img_shape[1]
char_boxes, char_inds = [], []
char_num = len(results['ann_info'][self.box_type])
for i in range(char_num):
char_box = results['ann_info'][self.box_type][i]
num_points = 2 if self.box_type == 'char_rects' else 4
for j in range(num_points):
char_box[j * 2] = round(char_box[j * 2] * w_scale)
char_box[j * 2 + 1] = round(char_box[j * 2 + 1] * h_scale)
char_boxes.append(char_box)
char = results['ann_info']['chars'][i]
char_ind = self.label_convertor.str2idx([char])[0][0]
char_inds.append(char_ind)
resize_shape = tuple(results['resize_shape'][:2])
pad_shape = tuple(results['pad_shape'][:2])
binary_target = self.generate_kernels(
resize_shape,
pad_shape,
char_boxes,
char_inds,
shrink_ratio=self.attn_shrink_ratio,
binary=True)
seg_target = self.generate_kernels(
resize_shape,
pad_shape,
char_boxes,
char_inds,
shrink_ratio=self.seg_shrink_ratio,
binary=False)
mask = np.ones(pad_shape, dtype=np.int32)
mask[:resize_shape[0], resize_shape[1]:] = 0
results['gt_kernels'] = BitmapMasks([binary_target, seg_target, mask],
pad_shape[0], pad_shape[1])
results['mask_fields'] = ['gt_kernels']
return results
|