File size: 5,409 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule

from mmocr.models.common import MultiHeadAttention


class SatrnEncoderLayer(BaseModule):
    """"""

    def __init__(self,
                 d_model=512,
                 d_inner=512,
                 n_head=8,
                 d_k=64,
                 d_v=64,
                 dropout=0.1,
                 qkv_bias=False,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.norm1 = nn.LayerNorm(d_model)
        self.attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, qkv_bias=qkv_bias, dropout=dropout)
        self.norm2 = nn.LayerNorm(d_model)
        self.feed_forward = LocalityAwareFeedforward(
            d_model, d_inner, dropout=dropout)

    def forward(self, x, h, w, mask=None):
        n, hw, c = x.size()
        residual = x
        x = self.norm1(x)
        x = residual + self.attn(x, x, x, mask)
        residual = x
        x = self.norm2(x)
        x = x.transpose(1, 2).contiguous().view(n, c, h, w)
        x = self.feed_forward(x)
        x = x.view(n, c, hw).transpose(1, 2)
        x = residual + x
        return x


class LocalityAwareFeedforward(BaseModule):
    """Locality-aware feedforward layer in SATRN, see `SATRN.

    <https://arxiv.org/abs/1910.04396>`_
    """

    def __init__(self,
                 d_in,
                 d_hid,
                 dropout=0.1,
                 init_cfg=[
                     dict(type='Xavier', layer='Conv2d'),
                     dict(type='Constant', layer='BatchNorm2d', val=1, bias=0)
                 ]):
        super().__init__(init_cfg=init_cfg)
        self.conv1 = ConvModule(
            d_in,
            d_hid,
            kernel_size=1,
            padding=0,
            bias=False,
            norm_cfg=dict(type='BN'),
            act_cfg=dict(type='ReLU'))

        self.depthwise_conv = ConvModule(
            d_hid,
            d_hid,
            kernel_size=3,
            padding=1,
            bias=False,
            groups=d_hid,
            norm_cfg=dict(type='BN'),
            act_cfg=dict(type='ReLU'))

        self.conv2 = ConvModule(
            d_hid,
            d_in,
            kernel_size=1,
            padding=0,
            bias=False,
            norm_cfg=dict(type='BN'),
            act_cfg=dict(type='ReLU'))

    def forward(self, x):
        x = self.conv1(x)
        x = self.depthwise_conv(x)
        x = self.conv2(x)

        return x


class Adaptive2DPositionalEncoding(BaseModule):
    """Implement Adaptive 2D positional encoder for SATRN, see
      `SATRN <https://arxiv.org/abs/1910.04396>`_
      Modified from https://github.com/Media-Smart/vedastr
      Licensed under the Apache License, Version 2.0 (the "License");
    Args:
        d_hid (int): Dimensions of hidden layer.
        n_height (int): Max height of the 2D feature output.
        n_width (int): Max width of the 2D feature output.
        dropout (int): Size of hidden layers of the model.
    """

    def __init__(self,
                 d_hid=512,
                 n_height=100,
                 n_width=100,
                 dropout=0.1,
                 init_cfg=[dict(type='Xavier', layer='Conv2d')]):
        super().__init__(init_cfg=init_cfg)

        h_position_encoder = self._get_sinusoid_encoding_table(n_height, d_hid)
        h_position_encoder = h_position_encoder.transpose(0, 1)
        h_position_encoder = h_position_encoder.view(1, d_hid, n_height, 1)

        w_position_encoder = self._get_sinusoid_encoding_table(n_width, d_hid)
        w_position_encoder = w_position_encoder.transpose(0, 1)
        w_position_encoder = w_position_encoder.view(1, d_hid, 1, n_width)

        self.register_buffer('h_position_encoder', h_position_encoder)
        self.register_buffer('w_position_encoder', w_position_encoder)

        self.h_scale = self.scale_factor_generate(d_hid)
        self.w_scale = self.scale_factor_generate(d_hid)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.dropout = nn.Dropout(p=dropout)

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        """Sinusoid position encoding table."""
        denominator = torch.Tensor([
            1.0 / np.power(10000, 2 * (hid_j // 2) / d_hid)
            for hid_j in range(d_hid)
        ])
        denominator = denominator.view(1, -1)
        pos_tensor = torch.arange(n_position).unsqueeze(-1).float()
        sinusoid_table = pos_tensor * denominator
        sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2])
        sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2])

        return sinusoid_table

    def scale_factor_generate(self, d_hid):
        scale_factor = nn.Sequential(
            nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.ReLU(inplace=True),
            nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.Sigmoid())

        return scale_factor

    def forward(self, x):
        b, c, h, w = x.size()

        avg_pool = self.pool(x)

        h_pos_encoding = \
            self.h_scale(avg_pool) * self.h_position_encoder[:, :, :h, :]
        w_pos_encoding = \
            self.w_scale(avg_pool) * self.w_position_encoder[:, :, :, :w]

        out = x + h_pos_encoding + w_pos_encoding

        out = self.dropout(out)

        return out