File size: 13,094 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmcv.ops import RoIAlignRotated

from .utils import (euclidean_distance_matrix, feature_embedding,
                    normalize_adjacent_matrix)


class LocalGraphs:
    """Generate local graphs for GCN to classify the neighbors of a pivot for
    DRRG: Deep Relational Reasoning Graph Network for Arbitrary Shape Text
    Detection.

    [https://arxiv.org/abs/2003.07493]. This code was partially adapted from
    https://github.com/GXYM/DRRG  licensed under the MIT license.

    Args:
        k_at_hops (tuple(int)): The number of i-hop neighbors, i = 1, 2.
        num_adjacent_linkages (int): The number of linkages when constructing
            adjacent matrix.
        node_geo_feat_len (int): The length of embedded geometric feature
            vector of a text component.
        pooling_scale (float): The spatial scale of rotated RoI-Align.
        pooling_output_size (tuple(int)): The output size of rotated RoI-Align.
        local_graph_thr(float): The threshold for filtering out identical local
            graphs.
    """

    def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
                 pooling_scale, pooling_output_size, local_graph_thr):

        assert len(k_at_hops) == 2
        assert all(isinstance(n, int) for n in k_at_hops)
        assert isinstance(num_adjacent_linkages, int)
        assert isinstance(node_geo_feat_len, int)
        assert isinstance(pooling_scale, float)
        assert all(isinstance(n, int) for n in pooling_output_size)
        assert isinstance(local_graph_thr, float)

        self.k_at_hops = k_at_hops
        self.num_adjacent_linkages = num_adjacent_linkages
        self.node_geo_feat_dim = node_geo_feat_len
        self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
        self.local_graph_thr = local_graph_thr

    def generate_local_graphs(self, sorted_dist_inds, gt_comp_labels):
        """Generate local graphs for GCN to predict which instance a text
        component belongs to.

        Args:
            sorted_dist_inds (ndarray): The complete graph node indices, which
                is sorted according to the Euclidean distance.
            gt_comp_labels(ndarray): The ground truth labels define the
                instance to which the text components (nodes in graphs) belong.

        Returns:
            pivot_local_graphs(list[list[int]]): The list of local graph
                neighbor indices of pivots.
            pivot_knns(list[list[int]]): The list of k-nearest neighbor indices
                of pivots.
        """

        assert sorted_dist_inds.ndim == 2
        assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
                gt_comp_labels.shape[0])

        knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
        pivot_local_graphs = []
        pivot_knns = []
        for pivot_ind, knn in enumerate(knn_graph):

            local_graph_neighbors = set(knn)

            for neighbor_ind in knn:
                local_graph_neighbors.update(
                    set(sorted_dist_inds[neighbor_ind,
                                         1:self.k_at_hops[1] + 1]))

            local_graph_neighbors.discard(pivot_ind)
            pivot_local_graph = list(local_graph_neighbors)
            pivot_local_graph.insert(0, pivot_ind)
            pivot_knn = [pivot_ind] + list(knn)

            if pivot_ind < 1:
                pivot_local_graphs.append(pivot_local_graph)
                pivot_knns.append(pivot_knn)
            else:
                add_flag = True
                for graph_ind, added_knn in enumerate(pivot_knns):
                    added_pivot_ind = added_knn[0]
                    added_local_graph = pivot_local_graphs[graph_ind]

                    union = len(
                        set(pivot_local_graph[1:]).union(
                            set(added_local_graph[1:])))
                    intersect = len(
                        set(pivot_local_graph[1:]).intersection(
                            set(added_local_graph[1:])))
                    local_graph_iou = intersect / (union + 1e-8)

                    if (local_graph_iou > self.local_graph_thr
                            and pivot_ind in added_knn
                            and gt_comp_labels[added_pivot_ind]
                            == gt_comp_labels[pivot_ind]
                            and gt_comp_labels[pivot_ind] != 0):
                        add_flag = False
                        break
                if add_flag:
                    pivot_local_graphs.append(pivot_local_graph)
                    pivot_knns.append(pivot_knn)

        return pivot_local_graphs, pivot_knns

    def generate_gcn_input(self, node_feat_batch, node_label_batch,
                           local_graph_batch, knn_batch,
                           sorted_dist_ind_batch):
        """Generate graph convolution network input data.

        Args:
            node_feat_batch (List[Tensor]): The batched graph node features.
            node_label_batch (List[ndarray]): The batched text component
                labels.
            local_graph_batch (List[List[list[int]]]): The local graph node
                indices of image batch.
            knn_batch (List[List[list[int]]]): The knn graph node indices of
                image batch.
            sorted_dist_ind_batch (list[ndarray]): The node indices sorted
                according to the Euclidean distance.

        Returns:
            local_graphs_node_feat (Tensor): The node features of graph.
            adjacent_matrices (Tensor): The adjacent matrices of local graphs.
            pivots_knn_inds (Tensor): The k-nearest neighbor indices in
                local graph.
            gt_linkage (Tensor): The surpervision signal of GCN for linkage
                prediction.
        """
        assert isinstance(node_feat_batch, list)
        assert isinstance(node_label_batch, list)
        assert isinstance(local_graph_batch, list)
        assert isinstance(knn_batch, list)
        assert isinstance(sorted_dist_ind_batch, list)

        num_max_nodes = max([
            len(pivot_local_graph) for pivot_local_graphs in local_graph_batch
            for pivot_local_graph in pivot_local_graphs
        ])

        local_graphs_node_feat = []
        adjacent_matrices = []
        pivots_knn_inds = []
        pivots_gt_linkage = []

        for batch_ind, sorted_dist_inds in enumerate(sorted_dist_ind_batch):
            node_feats = node_feat_batch[batch_ind]
            pivot_local_graphs = local_graph_batch[batch_ind]
            pivot_knns = knn_batch[batch_ind]
            node_labels = node_label_batch[batch_ind]
            device = node_feats.device

            for graph_ind, pivot_knn in enumerate(pivot_knns):
                pivot_local_graph = pivot_local_graphs[graph_ind]
                num_nodes = len(pivot_local_graph)
                pivot_ind = pivot_local_graph[0]
                node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}

                knn_inds = torch.tensor(
                    [node2ind_map[i] for i in pivot_knn[1:]])
                pivot_feats = node_feats[pivot_ind]
                normalized_feats = node_feats[pivot_local_graph] - pivot_feats

                adjacent_matrix = np.zeros((num_nodes, num_nodes),
                                           dtype=np.float32)
                for node in pivot_local_graph:
                    neighbors = sorted_dist_inds[node,
                                                 1:self.num_adjacent_linkages +
                                                 1]
                    for neighbor in neighbors:
                        if neighbor in pivot_local_graph:

                            adjacent_matrix[node2ind_map[node],
                                            node2ind_map[neighbor]] = 1
                            adjacent_matrix[node2ind_map[neighbor],
                                            node2ind_map[node]] = 1

                adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
                pad_adjacent_matrix = torch.zeros(
                    (num_max_nodes, num_max_nodes),
                    dtype=torch.float,
                    device=device)
                pad_adjacent_matrix[:num_nodes, :num_nodes] = torch.from_numpy(
                    adjacent_matrix)

                pad_normalized_feats = torch.cat([
                    normalized_feats,
                    torch.zeros(
                        (num_max_nodes - num_nodes, normalized_feats.shape[1]),
                        dtype=torch.float,
                        device=device)
                ],
                                                 dim=0)

                local_graph_labels = node_labels[pivot_local_graph]
                knn_labels = local_graph_labels[knn_inds]
                link_labels = ((node_labels[pivot_ind] == knn_labels) &
                               (node_labels[pivot_ind] > 0)).astype(np.int64)
                link_labels = torch.from_numpy(link_labels)

                local_graphs_node_feat.append(pad_normalized_feats)
                adjacent_matrices.append(pad_adjacent_matrix)
                pivots_knn_inds.append(knn_inds)
                pivots_gt_linkage.append(link_labels)

        local_graphs_node_feat = torch.stack(local_graphs_node_feat, 0)
        adjacent_matrices = torch.stack(adjacent_matrices, 0)
        pivots_knn_inds = torch.stack(pivots_knn_inds, 0)
        pivots_gt_linkage = torch.stack(pivots_gt_linkage, 0)

        return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
                pivots_gt_linkage)

    def __call__(self, feat_maps, comp_attribs):
        """Generate local graphs as GCN input.

        Args:
            feat_maps (Tensor): The feature maps to extract the content
                features of text components.
            comp_attribs (ndarray): The text component attributes.

        Returns:
            local_graphs_node_feat (Tensor): The node features of graph.
            adjacent_matrices (Tensor): The adjacent matrices of local graphs.
            pivots_knn_inds (Tensor): The k-nearest neighbor indices in local
                graph.
            gt_linkage (Tensor): The surpervision signal of GCN for linkage
                prediction.
        """

        assert isinstance(feat_maps, torch.Tensor)
        assert comp_attribs.ndim == 3
        assert comp_attribs.shape[2] == 8

        sorted_dist_inds_batch = []
        local_graph_batch = []
        knn_batch = []
        node_feat_batch = []
        node_label_batch = []
        device = feat_maps.device

        for batch_ind in range(comp_attribs.shape[0]):
            num_comps = int(comp_attribs[batch_ind, 0, 0])
            comp_geo_attribs = comp_attribs[batch_ind, :num_comps, 1:7]
            node_labels = comp_attribs[batch_ind, :num_comps,
                                       7].astype(np.int32)

            comp_centers = comp_geo_attribs[:, 0:2]
            distance_matrix = euclidean_distance_matrix(
                comp_centers, comp_centers)

            batch_id = np.zeros(
                (comp_geo_attribs.shape[0], 1), dtype=np.float32) * batch_ind
            comp_geo_attribs[:, -2] = np.clip(comp_geo_attribs[:, -2], -1, 1)
            angle = np.arccos(comp_geo_attribs[:, -2]) * np.sign(
                comp_geo_attribs[:, -1])
            angle = angle.reshape((-1, 1))
            rotated_rois = np.hstack(
                [batch_id, comp_geo_attribs[:, :-2], angle])
            rois = torch.from_numpy(rotated_rois).to(device)
            content_feats = self.pooling(feat_maps[batch_ind].unsqueeze(0),
                                         rois)

            content_feats = content_feats.view(content_feats.shape[0],
                                               -1).to(feat_maps.device)
            geo_feats = feature_embedding(comp_geo_attribs,
                                          self.node_geo_feat_dim)
            geo_feats = torch.from_numpy(geo_feats).to(device)
            node_feats = torch.cat([content_feats, geo_feats], dim=-1)

            sorted_dist_inds = np.argsort(distance_matrix, axis=1)
            pivot_local_graphs, pivot_knns = self.generate_local_graphs(
                sorted_dist_inds, node_labels)

            node_feat_batch.append(node_feats)
            node_label_batch.append(node_labels)
            local_graph_batch.append(pivot_local_graphs)
            knn_batch.append(pivot_knns)
            sorted_dist_inds_batch.append(sorted_dist_inds)

        (node_feats, adjacent_matrices, knn_inds, gt_linkage) = \
            self.generate_gcn_input(node_feat_batch,
                                    node_label_batch,
                                    local_graph_batch,
                                    knn_batch,
                                    sorted_dist_inds_batch)

        return node_feats, adjacent_matrices, knn_inds, gt_linkage