Spaces:
Runtime error
Runtime error
File size: 6,765 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch
import torch.nn as nn
from mmcv.cnn.bricks.transformer import BaseTransformerLayer
from mmcv.runner import ModuleList
from mmocr.models.builder import DECODERS
from mmocr.models.common.modules import PositionalEncoding
from .base_decoder import BaseDecoder
@DECODERS.register_module()
class ABILanguageDecoder(BaseDecoder):
r"""Transformer-based language model responsible for spell correction.
Implementation of language model of \
`ABINet <https://arxiv.org/abs/1910.04396>`_.
Args:
d_model (int): Hidden size of input.
n_head (int): Number of multi-attention heads.
d_inner (int): Hidden size of feedforward network model.
n_layers (int): The number of similar decoding layers.
max_seq_len (int): Maximum text sequence length :math:`T`.
dropout (float): Dropout rate.
detach_tokens (bool): Whether to block the gradient flow at input
tokens.
num_chars (int): Number of text characters :math:`C`.
use_self_attn (bool): If True, use self attention in decoder layers,
otherwise cross attention will be used.
pad_idx (bool): The index of the token indicating the end of output,
which is used to compute the length of output. It is usually the
index of `<EOS>` or `<PAD>` token.
init_cfg (dict): Specifies the initialization method for model layers.
"""
def __init__(self,
d_model=512,
n_head=8,
d_inner=2048,
n_layers=4,
max_seq_len=40,
dropout=0.1,
detach_tokens=True,
num_chars=90,
use_self_attn=False,
pad_idx=0,
init_cfg=None,
**kwargs):
super().__init__(init_cfg=init_cfg)
self.detach_tokens = detach_tokens
self.d_model = d_model
self.max_seq_len = max_seq_len
self.proj = nn.Linear(num_chars, d_model, False)
self.token_encoder = PositionalEncoding(
d_model, n_position=self.max_seq_len, dropout=0.1)
self.pos_encoder = PositionalEncoding(
d_model, n_position=self.max_seq_len)
self.pad_idx = pad_idx
if use_self_attn:
operation_order = ('self_attn', 'norm', 'cross_attn', 'norm',
'ffn', 'norm')
else:
operation_order = ('cross_attn', 'norm', 'ffn', 'norm')
decoder_layer = BaseTransformerLayer(
operation_order=operation_order,
attn_cfgs=dict(
type='MultiheadAttention',
embed_dims=d_model,
num_heads=n_head,
attn_drop=dropout,
dropout_layer=dict(type='Dropout', drop_prob=dropout),
),
ffn_cfgs=dict(
type='FFN',
embed_dims=d_model,
feedforward_channels=d_inner,
ffn_drop=dropout,
),
norm_cfg=dict(type='LN'),
)
self.decoder_layers = ModuleList(
[copy.deepcopy(decoder_layer) for _ in range(n_layers)])
self.cls = nn.Linear(d_model, num_chars)
def forward_train(self, feat, logits, targets_dict, img_metas):
"""
Args:
logits (Tensor): Raw language logitis. Shape (N, T, C).
Returns:
A dict with keys ``feature`` and ``logits``.
feature (Tensor): Shape (N, T, E). Raw textual features for vision
language aligner.
logits (Tensor): Shape (N, T, C). The raw logits for characters
after spell correction.
"""
lengths = self._get_length(logits)
lengths.clamp_(2, self.max_seq_len)
tokens = torch.softmax(logits, dim=-1)
if self.detach_tokens:
tokens = tokens.detach()
embed = self.proj(tokens) # (N, T, E)
embed = self.token_encoder(embed) # (N, T, E)
padding_mask = self._get_padding_mask(lengths, self.max_seq_len)
zeros = embed.new_zeros(*embed.shape)
query = self.pos_encoder(zeros)
query = query.permute(1, 0, 2) # (T, N, E)
embed = embed.permute(1, 0, 2)
location_mask = self._get_location_mask(self.max_seq_len,
tokens.device)
output = query
for m in self.decoder_layers:
output = m(
query=output,
key=embed,
value=embed,
attn_masks=location_mask,
key_padding_mask=padding_mask)
output = output.permute(1, 0, 2) # (N, T, E)
logits = self.cls(output) # (N, T, C)
return {'feature': output, 'logits': logits}
def forward_test(self, feat, out_enc, img_metas):
return self.forward_train(feat, out_enc, None, img_metas)
def _get_length(self, logit, dim=-1):
"""Greedy decoder to obtain length from logit.
Returns the first location of padding index or the length of the entire
tensor otherwise.
"""
# out as a boolean vector indicating the existence of end token(s)
out = (logit.argmax(dim=-1) == self.pad_idx)
abn = out.any(dim)
# Get the first index of end token
out = ((out.cumsum(dim) == 1) & out).max(dim)[1]
out = out + 1
out = torch.where(abn, out, out.new_tensor(logit.shape[1]))
return out
@staticmethod
def _get_location_mask(seq_len, device=None):
"""Generate location masks given input sequence length.
Args:
seq_len (int): The length of input sequence to transformer.
device (torch.device or str, optional): The device on which the
masks will be placed.
Returns:
Tensor: A mask tensor of shape (seq_len, seq_len) with -infs on
diagonal and zeros elsewhere.
"""
mask = torch.eye(seq_len, device=device)
mask = mask.float().masked_fill(mask == 1, float('-inf'))
return mask
@staticmethod
def _get_padding_mask(length, max_length):
"""Generate padding masks.
Args:
length (Tensor): Shape :math:`(N,)`.
max_length (int): The maximum sequence length :math:`T`.
Returns:
Tensor: A bool tensor of shape :math:`(N, T)` with Trues on
elements located over the length, or Falses elsewhere.
"""
length = length.unsqueeze(-1)
grid = torch.arange(0, max_length, device=length.device).unsqueeze(0)
return grid >= length
|