Spaces:
Runtime error
Runtime error
File size: 6,412 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmocr.models.builder import DECODERS, build_decoder
from mmocr.models.textrecog.layers import RobustScannerFusionLayer
from .base_decoder import BaseDecoder
@DECODERS.register_module()
class RobustScannerDecoder(BaseDecoder):
"""Decoder for RobustScanner.
RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for
Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_
Args:
num_classes (int): Number of output classes :math:`C`.
dim_input (int): Dimension :math:`D_i` of input vector ``feat``.
dim_model (int): Dimension :math:`D_m` of the model. Should also be the
same as encoder output vector ``out_enc``.
max_seq_len (int): Maximum output sequence length :math:`T`.
start_idx (int): The index of `<SOS>`.
mask (bool): Whether to mask input features according to
``img_meta['valid_ratio']``.
padding_idx (int): The index of `<PAD>`.
encode_value (bool): Whether to use the output of encoder ``out_enc``
as `value` of attention layer. If False, the original feature
``feat`` will be used.
hybrid_decoder (dict): Configuration dict for hybrid decoder.
position_decoder (dict): Configuration dict for position decoder.
init_cfg (dict or list[dict], optional): Initialization configs.
Warning:
This decoder will not predict the final class which is assumed to be
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>`
is also ignored by loss as specified in
:obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`.
"""
def __init__(self,
num_classes=None,
dim_input=512,
dim_model=128,
max_seq_len=40,
start_idx=0,
mask=True,
padding_idx=None,
encode_value=False,
hybrid_decoder=None,
position_decoder=None,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.dim_input = dim_input
self.dim_model = dim_model
self.max_seq_len = max_seq_len
self.encode_value = encode_value
self.start_idx = start_idx
self.padding_idx = padding_idx
self.mask = mask
# init hybrid decoder
hybrid_decoder.update(num_classes=self.num_classes)
hybrid_decoder.update(dim_input=self.dim_input)
hybrid_decoder.update(dim_model=self.dim_model)
hybrid_decoder.update(start_idx=self.start_idx)
hybrid_decoder.update(padding_idx=self.padding_idx)
hybrid_decoder.update(max_seq_len=self.max_seq_len)
hybrid_decoder.update(mask=self.mask)
hybrid_decoder.update(encode_value=self.encode_value)
hybrid_decoder.update(return_feature=True)
self.hybrid_decoder = build_decoder(hybrid_decoder)
# init position decoder
position_decoder.update(num_classes=self.num_classes)
position_decoder.update(dim_input=self.dim_input)
position_decoder.update(dim_model=self.dim_model)
position_decoder.update(max_seq_len=self.max_seq_len)
position_decoder.update(mask=self.mask)
position_decoder.update(encode_value=self.encode_value)
position_decoder.update(return_feature=True)
self.position_decoder = build_decoder(position_decoder)
self.fusion_module = RobustScannerFusionLayer(
self.dim_model if encode_value else dim_input)
pred_num_classes = num_classes - 1
self.prediction = nn.Linear(dim_model if encode_value else dim_input,
pred_num_classes)
def forward_train(self, feat, out_enc, targets_dict, img_metas):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
targets_dict (dict): A dict with the key ``padded_targets``, a
tensor of shape :math:`(N, T)`. Each element is the index of a
character.
img_metas (dict): A dict that contains meta information of input
images. Preferably with the key ``valid_ratio``.
Returns:
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`.
"""
hybrid_glimpse = self.hybrid_decoder.forward_train(
feat, out_enc, targets_dict, img_metas)
position_glimpse = self.position_decoder.forward_train(
feat, out_enc, targets_dict, img_metas)
fusion_out = self.fusion_module(hybrid_glimpse, position_glimpse)
out = self.prediction(fusion_out)
return out
def forward_test(self, feat, out_enc, img_metas):
"""
Args:
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
out_enc (Tensor): Encoder output of shape
:math:`(N, D_m, H, W)`.
img_metas (dict): A dict that contains meta information of input
images. Preferably with the key ``valid_ratio``.
Returns:
Tensor: The output logit sequence tensor of shape
:math:`(N, T, C-1)`.
"""
seq_len = self.max_seq_len
batch_size = feat.size(0)
decode_sequence = (feat.new_ones(
(batch_size, seq_len)) * self.start_idx).long()
position_glimpse = self.position_decoder.forward_test(
feat, out_enc, img_metas)
outputs = []
for i in range(seq_len):
hybrid_glimpse_step = self.hybrid_decoder.forward_test_step(
feat, out_enc, decode_sequence, i, img_metas)
fusion_out = self.fusion_module(hybrid_glimpse_step,
position_glimpse[:, i, :])
char_out = self.prediction(fusion_out)
char_out = F.softmax(char_out, -1)
outputs.append(char_out)
_, max_idx = torch.max(char_out, dim=1, keepdim=False)
if i < seq_len - 1:
decode_sequence[:, i + 1] = max_idx
outputs = torch.stack(outputs, 1)
return outputs
|