File size: 5,469 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) OpenMMLab. All rights reserved.
from queue import PriorityQueue

import torch
import torch.nn.functional as F

import mmocr.utils as utils
from mmocr.models.builder import DECODERS
from . import ParallelSARDecoder


class DecodeNode:
    """Node class to save decoded char indices and scores.

    Args:
        indexes (list[int]): Char indices that decoded yes.
        scores (list[float]): Char scores that decoded yes.
    """

    def __init__(self, indexes=[1], scores=[0.9]):
        assert utils.is_type_list(indexes, int)
        assert utils.is_type_list(scores, float)
        assert utils.equal_len(indexes, scores)

        self.indexes = indexes
        self.scores = scores

    def eval(self):
        """Calculate accumulated score."""
        accu_score = sum(self.scores)
        return accu_score


@DECODERS.register_module()
class ParallelSARDecoderWithBS(ParallelSARDecoder):
    """Parallel Decoder module with beam-search in SAR.

    Args:
        beam_width (int): Width for beam search.
    """

    def __init__(self,
                 beam_width=5,
                 num_classes=37,
                 enc_bi_rnn=False,
                 dec_bi_rnn=False,
                 dec_do_rnn=0,
                 dec_gru=False,
                 d_model=512,
                 d_enc=512,
                 d_k=64,
                 pred_dropout=0.0,
                 max_seq_len=40,
                 mask=True,
                 start_idx=0,
                 padding_idx=0,
                 pred_concat=False,
                 init_cfg=None,
                 **kwargs):
        super().__init__(
            num_classes,
            enc_bi_rnn,
            dec_bi_rnn,
            dec_do_rnn,
            dec_gru,
            d_model,
            d_enc,
            d_k,
            pred_dropout,
            max_seq_len,
            mask,
            start_idx,
            padding_idx,
            pred_concat,
            init_cfg=init_cfg)
        assert isinstance(beam_width, int)
        assert beam_width > 0

        self.beam_width = beam_width

    def forward_test(self, feat, out_enc, img_metas):
        assert utils.is_type_list(img_metas, dict)
        assert len(img_metas) == feat.size(0)

        valid_ratios = [
            img_meta.get('valid_ratio', 1.0) for img_meta in img_metas
        ] if self.mask else None

        seq_len = self.max_seq_len
        bsz = feat.size(0)
        assert bsz == 1, 'batch size must be 1 for beam search.'

        start_token = torch.full((bsz, ),
                                 self.start_idx,
                                 device=feat.device,
                                 dtype=torch.long)
        # bsz
        start_token = self.embedding(start_token)
        # bsz * emb_dim
        start_token = start_token.unsqueeze(1).expand(-1, seq_len, -1)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        decoder_input = torch.cat((out_enc, start_token), dim=1)
        # bsz * (seq_len + 1) * emb_dim

        # Initialize beam-search queue
        q = PriorityQueue()
        init_node = DecodeNode([self.start_idx], [0.0])
        q.put((-init_node.eval(), init_node))

        for i in range(1, seq_len + 1):
            next_nodes = []
            beam_width = self.beam_width if i > 1 else 1
            for _ in range(beam_width):
                _, node = q.get()

                input_seq = torch.clone(decoder_input)  # bsz * T * emb_dim
                # fill previous input tokens (step 1...i) in input_seq
                for t, index in enumerate(node.indexes):
                    input_token = torch.full((bsz, ),
                                             index,
                                             device=input_seq.device,
                                             dtype=torch.long)
                    input_token = self.embedding(input_token)  # bsz * emb_dim
                    input_seq[:, t + 1, :] = input_token

                output_seq = self._2d_attention(
                    input_seq, feat, out_enc, valid_ratios=valid_ratios)

                output_char = output_seq[:, i, :]  # bsz * num_classes
                output_char = F.softmax(output_char, -1)
                topk_value, topk_idx = output_char.topk(self.beam_width, dim=1)
                topk_value, topk_idx = topk_value.squeeze(0), topk_idx.squeeze(
                    0)

                for k in range(self.beam_width):
                    kth_score = topk_value[k].item()
                    kth_idx = topk_idx[k].item()
                    next_node = DecodeNode(node.indexes + [kth_idx],
                                           node.scores + [kth_score])
                    delta = k * 1e-6
                    next_nodes.append(
                        (-node.eval() - kth_score - delta, next_node))
                    # Use minus since priority queue sort
                    # with ascending order

            while not q.empty():
                q.get()

            # Put all candidates to queue
            for next_node in next_nodes:
                q.put(next_node)

        best_node = q.get()
        num_classes = self.num_classes - 1  # ignore padding index
        outputs = torch.zeros(bsz, seq_len, num_classes)
        for i in range(seq_len):
            idx = best_node[1].indexes[i + 1]
            outputs[0, i, idx] = best_node[1].scores[i + 1]

        return outputs