Spaces:
Runtime error
Runtime error
File size: 7,265 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.runner import BaseModule
from torch import nn
from torch.nn import functional as F
from mmocr.models.builder import HEADS, build_loss
@HEADS.register_module()
class SDMGRHead(BaseModule):
def __init__(self,
num_chars=92,
visual_dim=64,
fusion_dim=1024,
node_input=32,
node_embed=256,
edge_input=5,
edge_embed=256,
num_gnn=2,
num_classes=26,
loss=dict(type='SDMGRLoss'),
bidirectional=False,
train_cfg=None,
test_cfg=None,
init_cfg=dict(
type='Normal',
override=dict(name='edge_embed'),
mean=0,
std=0.01)):
super().__init__(init_cfg=init_cfg)
self.fusion = Block([visual_dim, node_embed], node_embed, fusion_dim)
self.node_embed = nn.Embedding(num_chars, node_input, 0)
hidden = node_embed // 2 if bidirectional else node_embed
self.rnn = nn.LSTM(
input_size=node_input,
hidden_size=hidden,
num_layers=1,
batch_first=True,
bidirectional=bidirectional)
self.edge_embed = nn.Linear(edge_input, edge_embed)
self.gnn_layers = nn.ModuleList(
[GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)])
self.node_cls = nn.Linear(node_embed, num_classes)
self.edge_cls = nn.Linear(edge_embed, 2)
self.loss = build_loss(loss)
def forward(self, relations, texts, x=None):
node_nums, char_nums = [], []
for text in texts:
node_nums.append(text.size(0))
char_nums.append((text > 0).sum(-1))
max_num = max([char_num.max() for char_num in char_nums])
all_nodes = torch.cat([
torch.cat(
[text,
text.new_zeros(text.size(0), max_num - text.size(1))], -1)
for text in texts
])
embed_nodes = self.node_embed(all_nodes.clamp(min=0).long())
rnn_nodes, _ = self.rnn(embed_nodes)
nodes = rnn_nodes.new_zeros(*rnn_nodes.shape[::2])
all_nums = torch.cat(char_nums)
valid = all_nums > 0
nodes[valid] = rnn_nodes[valid].gather(
1, (all_nums[valid] - 1).unsqueeze(-1).unsqueeze(-1).expand(
-1, -1, rnn_nodes.size(-1))).squeeze(1)
if x is not None:
nodes = self.fusion([x, nodes])
all_edges = torch.cat(
[rel.view(-1, rel.size(-1)) for rel in relations])
embed_edges = self.edge_embed(all_edges.float())
embed_edges = F.normalize(embed_edges)
for gnn_layer in self.gnn_layers:
nodes, cat_nodes = gnn_layer(nodes, embed_edges, node_nums)
node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(cat_nodes)
return node_cls, edge_cls
class GNNLayer(nn.Module):
def __init__(self, node_dim=256, edge_dim=256):
super().__init__()
self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim)
self.coef_fc = nn.Linear(node_dim, 1)
self.out_fc = nn.Linear(node_dim, node_dim)
self.relu = nn.ReLU()
def forward(self, nodes, edges, nums):
start, cat_nodes = 0, []
for num in nums:
sample_nodes = nodes[start:start + num]
cat_nodes.append(
torch.cat([
sample_nodes.unsqueeze(1).expand(-1, num, -1),
sample_nodes.unsqueeze(0).expand(num, -1, -1)
], -1).view(num**2, -1))
start += num
cat_nodes = torch.cat([torch.cat(cat_nodes), edges], -1)
cat_nodes = self.relu(self.in_fc(cat_nodes))
coefs = self.coef_fc(cat_nodes)
start, residuals = 0, []
for num in nums:
residual = F.softmax(
-torch.eye(num).to(coefs.device).unsqueeze(-1) * 1e9 +
coefs[start:start + num**2].view(num, num, -1), 1)
residuals.append(
(residual *
cat_nodes[start:start + num**2].view(num, num, -1)).sum(1))
start += num**2
nodes += self.relu(self.out_fc(torch.cat(residuals)))
return nodes, cat_nodes
class Block(nn.Module):
def __init__(self,
input_dims,
output_dim,
mm_dim=1600,
chunks=20,
rank=15,
shared=False,
dropout_input=0.,
dropout_pre_lin=0.,
dropout_output=0.,
pos_norm='before_cat'):
super().__init__()
self.rank = rank
self.dropout_input = dropout_input
self.dropout_pre_lin = dropout_pre_lin
self.dropout_output = dropout_output
assert (pos_norm in ['before_cat', 'after_cat'])
self.pos_norm = pos_norm
# Modules
self.linear0 = nn.Linear(input_dims[0], mm_dim)
self.linear1 = (
self.linear0 if shared else nn.Linear(input_dims[1], mm_dim))
self.merge_linears0 = nn.ModuleList()
self.merge_linears1 = nn.ModuleList()
self.chunks = self.chunk_sizes(mm_dim, chunks)
for size in self.chunks:
ml0 = nn.Linear(size, size * rank)
self.merge_linears0.append(ml0)
ml1 = ml0 if shared else nn.Linear(size, size * rank)
self.merge_linears1.append(ml1)
self.linear_out = nn.Linear(mm_dim, output_dim)
def forward(self, x):
x0 = self.linear0(x[0])
x1 = self.linear1(x[1])
bs = x1.size(0)
if self.dropout_input > 0:
x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
x1 = F.dropout(x1, p=self.dropout_input, training=self.training)
x0_chunks = torch.split(x0, self.chunks, -1)
x1_chunks = torch.split(x1, self.chunks, -1)
zs = []
for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks,
self.merge_linears0,
self.merge_linears1):
m = m0(x0_c) * m1(x1_c) # bs x split_size*rank
m = m.view(bs, self.rank, -1)
z = torch.sum(m, 1)
if self.pos_norm == 'before_cat':
z = torch.sqrt(F.relu(z)) - torch.sqrt(F.relu(-z))
z = F.normalize(z)
zs.append(z)
z = torch.cat(zs, 1)
if self.pos_norm == 'after_cat':
z = torch.sqrt(F.relu(z)) - torch.sqrt(F.relu(-z))
z = F.normalize(z)
if self.dropout_pre_lin > 0:
z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)
z = self.linear_out(z)
if self.dropout_output > 0:
z = F.dropout(z, p=self.dropout_output, training=self.training)
return z
@staticmethod
def chunk_sizes(dim, chunks):
split_size = (dim + chunks - 1) // chunks
sizes_list = [split_size] * chunks
sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim)
return sizes_list
|