File size: 10,664 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.runner import BaseModule

from mmocr.models.builder import HEADS, build_loss
from mmocr.models.textdet.modules import GCN, LocalGraphs, ProposalLocalGraphs
from mmocr.utils import check_argument
from .head_mixin import HeadMixin


@HEADS.register_module()
class DRRGHead(HeadMixin, BaseModule):
    """The class for DRRG head: `Deep Relational Reasoning Graph Network for
    Arbitrary Shape Text Detection <https://arxiv.org/abs/2003.07493>`_.

    Args:
        k_at_hops (tuple(int)): The number of i-hop neighbors, i = 1, 2.
        num_adjacent_linkages (int): The number of linkages when constructing
            adjacent matrix.
        node_geo_feat_len (int): The length of embedded geometric feature
            vector of a component.
        pooling_scale (float): The spatial scale of rotated RoI-Align.
        pooling_output_size (tuple(int)): The output size of RRoI-Aligning.
        nms_thr (float): The locality-aware NMS threshold of text components.
        min_width (float): The minimum width of text components.
        max_width (float): The maximum width of text components.
        comp_shrink_ratio (float): The shrink ratio of text components.
        comp_ratio (float): The reciprocal of aspect ratio of text components.
        comp_score_thr (float): The score threshold of text components.
        text_region_thr (float): The threshold for text region probability map.
        center_region_thr (float): The threshold for text center region
            probability map.
        center_region_area_thr (int): The threshold for filtering small-sized
            text center region.
        local_graph_thr (float): The threshold to filter identical local
            graphs.
        loss (dict): The config of loss that DRRGHead uses..
        postprocessor (dict): Config of postprocessor for Drrg.
        init_cfg (dict or list[dict], optional): Initialization configs.
    """

    def __init__(self,
                 in_channels,
                 k_at_hops=(8, 4),
                 num_adjacent_linkages=3,
                 node_geo_feat_len=120,
                 pooling_scale=1.0,
                 pooling_output_size=(4, 3),
                 nms_thr=0.3,
                 min_width=8.0,
                 max_width=24.0,
                 comp_shrink_ratio=1.03,
                 comp_ratio=0.4,
                 comp_score_thr=0.3,
                 text_region_thr=0.2,
                 center_region_thr=0.2,
                 center_region_area_thr=50,
                 local_graph_thr=0.7,
                 loss=dict(type='DRRGLoss'),
                 postprocessor=dict(type='DRRGPostprocessor', link_thr=0.85),
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=dict(
                     type='Normal',
                     override=dict(name='out_conv'),
                     mean=0,
                     std=0.01),
                 **kwargs):
        old_keys = ['text_repr_type', 'decoding_type', 'link_thr']
        for key in old_keys:
            if kwargs.get(key, None):
                postprocessor[key] = kwargs.get(key)
                warnings.warn(
                    f'{key} is deprecated, please specify '
                    'it in postprocessor config dict. See '
                    'https://github.com/open-mmlab/mmocr/pull/640'
                    ' for details.', UserWarning)
        BaseModule.__init__(self, init_cfg=init_cfg)
        HeadMixin.__init__(self, loss, postprocessor)

        assert isinstance(in_channels, int)
        assert isinstance(k_at_hops, tuple)
        assert isinstance(num_adjacent_linkages, int)
        assert isinstance(node_geo_feat_len, int)
        assert isinstance(pooling_scale, float)
        assert isinstance(pooling_output_size, tuple)
        assert isinstance(comp_shrink_ratio, float)
        assert isinstance(nms_thr, float)
        assert isinstance(min_width, float)
        assert isinstance(max_width, float)
        assert isinstance(comp_ratio, float)
        assert isinstance(comp_score_thr, float)
        assert isinstance(text_region_thr, float)
        assert isinstance(center_region_thr, float)
        assert isinstance(center_region_area_thr, int)
        assert isinstance(local_graph_thr, float)

        self.in_channels = in_channels
        self.out_channels = 6
        self.downsample_ratio = 1.0
        self.k_at_hops = k_at_hops
        self.num_adjacent_linkages = num_adjacent_linkages
        self.node_geo_feat_len = node_geo_feat_len
        self.pooling_scale = pooling_scale
        self.pooling_output_size = pooling_output_size
        self.comp_shrink_ratio = comp_shrink_ratio
        self.nms_thr = nms_thr
        self.min_width = min_width
        self.max_width = max_width
        self.comp_ratio = comp_ratio
        self.comp_score_thr = comp_score_thr
        self.text_region_thr = text_region_thr
        self.center_region_thr = center_region_thr
        self.center_region_area_thr = center_region_area_thr
        self.local_graph_thr = local_graph_thr
        self.loss_module = build_loss(loss)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.out_conv = nn.Conv2d(
            in_channels=self.in_channels,
            out_channels=self.out_channels,
            kernel_size=1,
            stride=1,
            padding=0)

        self.graph_train = LocalGraphs(self.k_at_hops,
                                       self.num_adjacent_linkages,
                                       self.node_geo_feat_len,
                                       self.pooling_scale,
                                       self.pooling_output_size,
                                       self.local_graph_thr)

        self.graph_test = ProposalLocalGraphs(
            self.k_at_hops, self.num_adjacent_linkages, self.node_geo_feat_len,
            self.pooling_scale, self.pooling_output_size, self.nms_thr,
            self.min_width, self.max_width, self.comp_shrink_ratio,
            self.comp_ratio, self.comp_score_thr, self.text_region_thr,
            self.center_region_thr, self.center_region_area_thr)

        pool_w, pool_h = self.pooling_output_size
        node_feat_len = (pool_w * pool_h) * (
            self.in_channels + self.out_channels) + self.node_geo_feat_len
        self.gcn = GCN(node_feat_len)

    def forward(self, inputs, gt_comp_attribs):
        """
        Args:
            inputs (Tensor): Shape of :math:`(N, C, H, W)`.
            gt_comp_attribs (list[ndarray]): The padded text component
                attributes. Shape: (num_component, 8).

        Returns:
            tuple: Returns (pred_maps, (gcn_pred, gt_labels)).

                - | pred_maps (Tensor): Prediction map with shape
                    :math:`(N, C_{out}, H, W)`.
                - | gcn_pred (Tensor): Prediction from GCN module, with
                    shape :math:`(N, 2)`.
                - | gt_labels (Tensor): Ground-truth label with shape
                    :math:`(N, 8)`.
        """
        pred_maps = self.out_conv(inputs)
        feat_maps = torch.cat([inputs, pred_maps], dim=1)
        node_feats, adjacent_matrices, knn_inds, gt_labels = self.graph_train(
            feat_maps, np.stack(gt_comp_attribs))

        gcn_pred = self.gcn(node_feats, adjacent_matrices, knn_inds)

        return pred_maps, (gcn_pred, gt_labels)

    def single_test(self, feat_maps):
        r"""
        Args:
            feat_maps (Tensor): Shape of :math:`(N, C, H, W)`.

        Returns:
            tuple: Returns (edge, score, text_comps).

                - | edge (ndarray): The edge array of shape :math:`(N, 2)`
                    where each row is a pair of text component indices
                    that makes up an edge in graph.
                - | score (ndarray): The score array of shape :math:`(N,)`,
                    corresponding to the edge above.
                - | text_comps (ndarray): The text components of shape
                    :math:`(N, 9)` where each row corresponds to one box and
                    its score: (x1, y1, x2, y2, x3, y3, x4, y4, score).
        """
        pred_maps = self.out_conv(feat_maps)
        feat_maps = torch.cat([feat_maps, pred_maps], dim=1)

        none_flag, graph_data = self.graph_test(pred_maps, feat_maps)

        (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
         pivot_local_graphs, text_comps) = graph_data

        if none_flag:
            return None, None, None

        gcn_pred = self.gcn(local_graphs_node_feat, adjacent_matrices,
                            pivots_knn_inds)
        pred_labels = F.softmax(gcn_pred, dim=1)

        edges = []
        scores = []
        pivot_local_graphs = pivot_local_graphs.long().squeeze().cpu().numpy()

        for pivot_ind, pivot_local_graph in enumerate(pivot_local_graphs):
            pivot = pivot_local_graph[0]
            for k_ind, neighbor_ind in enumerate(pivots_knn_inds[pivot_ind]):
                neighbor = pivot_local_graph[neighbor_ind.item()]
                edges.append([pivot, neighbor])
                scores.append(
                    pred_labels[pivot_ind * pivots_knn_inds.shape[1] + k_ind,
                                1].item())

        edges = np.asarray(edges)
        scores = np.asarray(scores)

        return edges, scores, text_comps

    def get_boundary(self, edges, scores, text_comps, img_metas, rescale):
        """Compute text boundaries via post processing.

        Args:
            edges (ndarray): The edge array of shape N * 2, each row is a pair
                of text component indices that makes up an edge in graph.
            scores (ndarray): The edge score array.
            text_comps (ndarray): The text components.
            img_metas (list[dict]): The image meta infos.
            rescale (bool): Rescale boundaries to the original image
                resolution.

        Returns:
            dict: The result dict containing key `boundary_result`.
        """

        assert check_argument.is_type_list(img_metas, dict)
        assert isinstance(rescale, bool)

        boundaries = []
        if edges is not None:
            boundaries = self.postprocessor(edges, scores, text_comps)

        if rescale:
            boundaries = self.resize_boundary(
                boundaries,
                1.0 / self.downsample_ratio / img_metas[0]['scale_factor'])

        results = dict(boundary_result=boundaries)

        return results