Spaces:
Runtime error
Runtime error
File size: 30,432 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os
import shutil
import urllib
import warnings
import cv2
import mmcv
import numpy as np
import torch
from matplotlib import pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import mmocr.utils as utils
def overlay_mask_img(img, mask):
"""Draw mask boundaries on image for visualization.
Args:
img (ndarray): The input image.
mask (ndarray): The instance mask.
Returns:
img (ndarray): The output image with instance boundaries on it.
"""
assert isinstance(img, np.ndarray)
assert isinstance(mask, np.ndarray)
contours, _ = cv2.findContours(
mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, (0, 255, 0), 1)
return img
def show_feature(features, names, to_uint8, out_file=None):
"""Visualize a list of feature maps.
Args:
features (list(ndarray)): The feature map list.
names (list(str)): The visualized title list.
to_uint8 (list(1|0)): The list indicating whether to convent
feature maps to uint8.
out_file (str): The output file name. If set to None,
the output image will be shown without saving.
"""
assert utils.is_type_list(features, np.ndarray)
assert utils.is_type_list(names, str)
assert utils.is_type_list(to_uint8, int)
assert utils.is_none_or_type(out_file, str)
assert utils.equal_len(features, names, to_uint8)
num = len(features)
row = col = math.ceil(math.sqrt(num))
for i, (f, n) in enumerate(zip(features, names)):
plt.subplot(row, col, i + 1)
plt.title(n)
if to_uint8[i]:
f = f.astype(np.uint8)
plt.imshow(f)
if out_file is None:
plt.show()
else:
plt.savefig(out_file)
def show_img_boundary(img, boundary):
"""Show image and instance boundaires.
Args:
img (ndarray): The input image.
boundary (list[float or int]): The input boundary.
"""
assert isinstance(img, np.ndarray)
assert utils.is_type_list(boundary, (int, float))
cv2.polylines(
img, [np.array(boundary).astype(np.int32).reshape(-1, 1, 2)],
True,
color=(0, 255, 0),
thickness=1)
plt.imshow(img)
plt.show()
def show_pred_gt(preds,
gts,
show=False,
win_name='',
wait_time=0,
out_file=None):
"""Show detection and ground truth for one image.
Args:
preds (list[list[float]]): The detection boundary list.
gts (list[list[float]]): The ground truth boundary list.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): The value of waitKey param.
out_file (str): The filename of the output.
"""
assert utils.is_2dlist(preds)
assert utils.is_2dlist(gts)
assert isinstance(show, bool)
assert isinstance(win_name, str)
assert isinstance(wait_time, int)
assert utils.is_none_or_type(out_file, str)
p_xy = [p for boundary in preds for p in boundary]
gt_xy = [g for gt in gts for g in gt]
max_xy = np.max(np.array(p_xy + gt_xy).reshape(-1, 2), axis=0)
width = int(max_xy[0]) + 100
height = int(max_xy[1]) + 100
img = np.ones((height, width, 3), np.int8) * 255
pred_color = mmcv.color_val('red')
gt_color = mmcv.color_val('blue')
thickness = 1
for boundary in preds:
cv2.polylines(
img, [np.array(boundary).astype(np.int32).reshape(-1, 1, 2)],
True,
color=pred_color,
thickness=thickness)
for gt in gts:
cv2.polylines(
img, [np.array(gt).astype(np.int32).reshape(-1, 1, 2)],
True,
color=gt_color,
thickness=thickness)
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def imshow_pred_boundary(img,
boundaries_with_scores,
labels,
score_thr=0,
boundary_color='blue',
text_color='blue',
thickness=1,
font_scale=0.5,
show=True,
win_name='',
wait_time=0,
out_file=None,
show_score=False):
"""Draw boundaries and class labels (with scores) on an image.
Args:
img (str or ndarray): The image to be displayed.
boundaries_with_scores (list[list[float]]): Boundaries with scores.
labels (list[int]): Labels of boundaries.
score_thr (float): Minimum score of boundaries to be shown.
boundary_color (str or tuple or :obj:`Color`): Color of boundaries.
text_color (str or tuple or :obj:`Color`): Color of texts.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str or None): The filename of the output.
show_score (bool): Whether to show text instance score.
"""
assert isinstance(img, (str, np.ndarray))
assert utils.is_2dlist(boundaries_with_scores)
assert utils.is_type_list(labels, int)
assert utils.equal_len(boundaries_with_scores, labels)
if len(boundaries_with_scores) == 0:
warnings.warn('0 text found in ' + out_file)
return None
utils.valid_boundary(boundaries_with_scores[0])
img = mmcv.imread(img)
scores = np.array([b[-1] for b in boundaries_with_scores])
inds = scores > score_thr
boundaries = [boundaries_with_scores[i][:-1] for i in np.where(inds)[0]]
scores = [scores[i] for i in np.where(inds)[0]]
labels = [labels[i] for i in np.where(inds)[0]]
boundary_color = mmcv.color_val(boundary_color)
text_color = mmcv.color_val(text_color)
font_scale = 0.5
for boundary, score in zip(boundaries, scores):
boundary_int = np.array(boundary).astype(np.int32)
cv2.polylines(
img, [boundary_int.reshape(-1, 1, 2)],
True,
color=boundary_color,
thickness=thickness)
if show_score:
label_text = f'{score:.02f}'
cv2.putText(img, label_text,
(boundary_int[0], boundary_int[1] - 2),
cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def imshow_text_char_boundary(img,
text_quads,
boundaries,
char_quads,
chars,
show=False,
thickness=1,
font_scale=0.5,
win_name='',
wait_time=-1,
out_file=None):
"""Draw text boxes and char boxes on img.
Args:
img (str or ndarray): The img to be displayed.
text_quads (list[list[int|float]]): The text boxes.
boundaries (list[list[int|float]]): The boundary list.
char_quads (list[list[list[int|float]]]): A 2d list of char boxes.
char_quads[i] is for the ith text, and char_quads[i][j] is the jth
char of the ith text.
chars (list[list[char]]). The string for each text box.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str or None): The filename of the output.
"""
assert isinstance(img, (np.ndarray, str))
assert utils.is_2dlist(text_quads)
assert utils.is_2dlist(boundaries)
assert utils.is_3dlist(char_quads)
assert utils.is_2dlist(chars)
assert utils.equal_len(text_quads, char_quads, boundaries)
img = mmcv.imread(img)
char_color = [mmcv.color_val('blue'), mmcv.color_val('green')]
text_color = mmcv.color_val('red')
text_inx = 0
for text_box, boundary, char_box, txt in zip(text_quads, boundaries,
char_quads, chars):
text_box = np.array(text_box)
boundary = np.array(boundary)
text_box = text_box.reshape(-1, 2).astype(np.int32)
cv2.polylines(
img, [text_box.reshape(-1, 1, 2)],
True,
color=text_color,
thickness=thickness)
if boundary.shape[0] > 0:
cv2.polylines(
img, [boundary.reshape(-1, 1, 2)],
True,
color=text_color,
thickness=thickness)
for b in char_box:
b = np.array(b)
c = char_color[text_inx % 2]
b = b.astype(np.int32)
cv2.polylines(
img, [b.reshape(-1, 1, 2)], True, color=c, thickness=thickness)
label_text = ''.join(txt)
cv2.putText(img, label_text, (text_box[0, 0], text_box[0, 1] - 2),
cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
text_inx = text_inx + 1
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def tile_image(images):
"""Combined multiple images to one vertically.
Args:
images (list[np.ndarray]): Images to be combined.
"""
assert isinstance(images, list)
assert len(images) > 0
for i, _ in enumerate(images):
if len(images[i].shape) == 2:
images[i] = cv2.cvtColor(images[i], cv2.COLOR_GRAY2BGR)
widths = [img.shape[1] for img in images]
heights = [img.shape[0] for img in images]
h, w = sum(heights), max(widths)
vis_img = np.zeros((h, w, 3), dtype=np.uint8)
offset_y = 0
for image in images:
img_h, img_w = image.shape[:2]
vis_img[offset_y:(offset_y + img_h), 0:img_w, :] = image
offset_y += img_h
return vis_img
def imshow_text_label(img,
pred_label,
gt_label,
show=False,
win_name='',
wait_time=-1,
out_file=None):
"""Draw predicted texts and ground truth texts on images.
Args:
img (str or np.ndarray): Image filename or loaded image.
pred_label (str): Predicted texts.
gt_label (str): Ground truth texts.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str): The filename of the output.
"""
assert isinstance(img, (np.ndarray, str))
assert isinstance(pred_label, str)
assert isinstance(gt_label, str)
assert isinstance(show, bool)
assert isinstance(win_name, str)
assert isinstance(wait_time, int)
img = mmcv.imread(img)
src_h, src_w = img.shape[:2]
resize_height = 64
resize_width = int(1.0 * src_w / src_h * resize_height)
img = cv2.resize(img, (resize_width, resize_height))
h, w = img.shape[:2]
if is_contain_chinese(pred_label):
pred_img = draw_texts_by_pil(img, [pred_label], None)
else:
pred_img = np.ones((h, w, 3), dtype=np.uint8) * 255
cv2.putText(pred_img, pred_label, (5, 40), cv2.FONT_HERSHEY_SIMPLEX,
0.9, (0, 0, 255), 2)
images = [pred_img, img]
if gt_label != '':
if is_contain_chinese(gt_label):
gt_img = draw_texts_by_pil(img, [gt_label], None)
else:
gt_img = np.ones((h, w, 3), dtype=np.uint8) * 255
cv2.putText(gt_img, gt_label, (5, 40), cv2.FONT_HERSHEY_SIMPLEX,
0.9, (255, 0, 0), 2)
images.append(gt_img)
img = tile_image(images)
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def imshow_node(img,
result,
boxes,
idx_to_cls={},
show=False,
win_name='',
wait_time=-1,
out_file=None):
img = mmcv.imread(img)
h, w = img.shape[:2]
max_value, max_idx = torch.max(result['nodes'].detach().cpu(), -1)
node_pred_label = max_idx.numpy().tolist()
node_pred_score = max_value.numpy().tolist()
texts, text_boxes = [], []
for i, box in enumerate(boxes):
new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
[box[0], box[3]]]
Pts = np.array([new_box], np.int32)
cv2.polylines(
img, [Pts.reshape((-1, 1, 2))],
True,
color=(255, 255, 0),
thickness=1)
x_min = int(min([point[0] for point in new_box]))
y_min = int(min([point[1] for point in new_box]))
# text
pred_label = str(node_pred_label[i])
if pred_label in idx_to_cls:
pred_label = idx_to_cls[pred_label]
pred_score = '{:.2f}'.format(node_pred_score[i])
text = pred_label + '(' + pred_score + ')'
texts.append(text)
# text box
font_size = int(
min(
abs(new_box[3][1] - new_box[0][1]),
abs(new_box[1][0] - new_box[0][0])))
char_num = len(text)
text_box = [
x_min * 2, y_min, x_min * 2 + font_size * char_num, y_min,
x_min * 2 + font_size * char_num, y_min + font_size, x_min * 2,
y_min + font_size
]
text_boxes.append(text_box)
pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255
pred_img = draw_texts_by_pil(
pred_img, texts, text_boxes, draw_box=False, on_ori_img=True)
vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255
vis_img[:, :w] = img
vis_img[:, w:] = pred_img
if show:
mmcv.imshow(vis_img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(vis_img, out_file)
return vis_img
def gen_color():
"""Generate BGR color schemes."""
color_list = [(101, 67, 254), (154, 157, 252), (173, 205, 249),
(123, 151, 138), (187, 200, 178), (148, 137, 69),
(169, 200, 200), (155, 175, 131), (154, 194, 182),
(178, 190, 137), (140, 211, 222), (83, 156, 222)]
return color_list
def draw_polygons(img, polys):
"""Draw polygons on image.
Args:
img (np.ndarray): The original image.
polys (list[list[float]]): Detected polygons.
Return:
out_img (np.ndarray): Visualized image.
"""
dst_img = img.copy()
color_list = gen_color()
out_img = dst_img
for idx, poly in enumerate(polys):
poly = np.array(poly).reshape((-1, 1, 2)).astype(np.int32)
cv2.drawContours(
img,
np.array([poly]),
-1,
color_list[idx % len(color_list)],
thickness=cv2.FILLED)
out_img = cv2.addWeighted(dst_img, 0.5, img, 0.5, 0)
return out_img
def get_optimal_font_scale(text, width):
"""Get optimal font scale for cv2.putText.
Args:
text (str): Text in one box.
width (int): The box width.
"""
for scale in reversed(range(0, 60, 1)):
textSize = cv2.getTextSize(
text,
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=scale / 10,
thickness=1)
new_width = textSize[0][0]
if new_width <= width:
return scale / 10
return 1
def draw_texts(img, texts, boxes=None, draw_box=True, on_ori_img=False):
"""Draw boxes and texts on empty img.
Args:
img (np.ndarray): The original image.
texts (list[str]): Recognized texts.
boxes (list[list[float]]): Detected bounding boxes.
draw_box (bool): Whether draw box or not. If False, draw text only.
on_ori_img (bool): If True, draw box and text on input image,
else, on a new empty image.
Return:
out_img (np.ndarray): Visualized image.
"""
color_list = gen_color()
h, w = img.shape[:2]
if boxes is None:
boxes = [[0, 0, w, 0, w, h, 0, h]]
assert len(texts) == len(boxes)
if on_ori_img:
out_img = img
else:
out_img = np.ones((h, w, 3), dtype=np.uint8) * 255
for idx, (box, text) in enumerate(zip(boxes, texts)):
if draw_box:
new_box = [[x, y] for x, y in zip(box[0::2], box[1::2])]
Pts = np.array([new_box], np.int32)
cv2.polylines(
out_img, [Pts.reshape((-1, 1, 2))],
True,
color=color_list[idx % len(color_list)],
thickness=1)
min_x = int(min(box[0::2]))
max_y = int(
np.mean(np.array(box[1::2])) + 0.2 *
(max(box[1::2]) - min(box[1::2])))
font_scale = get_optimal_font_scale(
text, int(max(box[0::2]) - min(box[0::2])))
cv2.putText(out_img, text, (min_x, max_y), cv2.FONT_HERSHEY_SIMPLEX,
font_scale, (0, 0, 0), 1)
return out_img
def draw_texts_by_pil(img,
texts,
boxes=None,
draw_box=True,
on_ori_img=False,
font_size=None,
fill_color=None,
draw_pos=None,
return_text_size=False):
"""Draw boxes and texts on empty image, especially for Chinese.
Args:
img (np.ndarray): The original image.
texts (list[str]): Recognized texts.
boxes (list[list[float]]): Detected bounding boxes.
draw_box (bool): Whether draw box or not. If False, draw text only.
on_ori_img (bool): If True, draw box and text on input image,
else on a new empty image.
font_size (int, optional): Size to create a font object for a font.
fill_color (tuple(int), optional): Fill color for text.
draw_pos (list[tuple(int)], optional): Start point to draw each text.
return_text_size (bool): If True, return the list of text size.
Returns:
(np.ndarray, list[tuple]) or np.ndarray: Return a tuple
``(out_img, text_sizes)``, where ``out_img`` is the output image
with texts drawn on it and ``text_sizes`` are the size of drawing
texts. If ``return_text_size`` is False, only the output image will be
returned.
"""
color_list = gen_color()
h, w = img.shape[:2]
if boxes is None:
boxes = [[0, 0, w, 0, w, h, 0, h]]
if draw_pos is None:
draw_pos = [None for _ in texts]
assert len(boxes) == len(texts) == len(draw_pos)
if fill_color is None:
fill_color = (0, 0, 0)
if on_ori_img:
out_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
out_img = Image.new('RGB', (w, h), color=(255, 255, 255))
out_draw = ImageDraw.Draw(out_img)
text_sizes = []
for idx, (box, text, ori_point) in enumerate(zip(boxes, texts, draw_pos)):
if len(text) == 0:
continue
min_x, max_x = min(box[0::2]), max(box[0::2])
min_y, max_y = min(box[1::2]), max(box[1::2])
color = tuple(list(color_list[idx % len(color_list)])[::-1])
if draw_box:
out_draw.line(box, fill=color, width=1)
dirname, _ = os.path.split(os.path.abspath(__file__))
font_path = os.path.join(dirname, 'font.TTF')
if not os.path.exists(font_path):
url = ('https://download.openmmlab.com/mmocr/data/font.TTF')
print(f'Downloading {url} ...')
local_filename, _ = urllib.request.urlretrieve(url)
shutil.move(local_filename, font_path)
tmp_font_size = font_size
if tmp_font_size is None:
box_width = max(max_x - min_x, max_y - min_y)
tmp_font_size = int(0.9 * box_width / len(text))
fnt = ImageFont.truetype(font_path, tmp_font_size)
if ori_point is None:
ori_point = (min_x + 1, min_y + 1)
out_draw.text(ori_point, text, font=fnt, fill=fill_color)
text_sizes.append(fnt.getsize(text))
del out_draw
out_img = cv2.cvtColor(np.asarray(out_img), cv2.COLOR_RGB2BGR)
if return_text_size:
return out_img, text_sizes
return out_img
def is_contain_chinese(check_str):
"""Check whether string contains Chinese or not.
Args:
check_str (str): String to be checked.
Return True if contains Chinese, else False.
"""
for ch in check_str:
if u'\u4e00' <= ch <= u'\u9fff':
return True
return False
def det_recog_show_result(img, end2end_res, out_file=None):
"""Draw `result`(boxes and texts) on `img`.
Args:
img (str or np.ndarray): The image to be displayed.
end2end_res (dict): Text detect and recognize results.
out_file (str): Image path where the visualized image should be saved.
Return:
out_img (np.ndarray): Visualized image.
"""
img = mmcv.imread(img)
boxes, texts = [], []
for res in end2end_res['result']:
boxes.append(res['box'])
texts.append(res['text'])
box_vis_img = draw_polygons(img, boxes)
if is_contain_chinese(''.join(texts)):
text_vis_img = draw_texts_by_pil(img, texts, boxes)
else:
text_vis_img = draw_texts(img, texts, boxes)
h, w = img.shape[:2]
out_img = np.ones((h, w * 2, 3), dtype=np.uint8)
out_img[:, :w, :] = box_vis_img
out_img[:, w:, :] = text_vis_img
if out_file:
mmcv.imwrite(out_img, out_file)
return out_img
def draw_edge_result(img, result, edge_thresh=0.5, keynode_thresh=0.5):
"""Draw text and their relationship on empty images.
Args:
img (np.ndarray): The original image.
result (dict): The result of model forward_test, including:
- img_metas (list[dict]): List of meta information dictionary.
- nodes (Tensor): Node prediction with size:
number_node * node_classes.
- edges (Tensor): Edge prediction with size: number_edge * 2.
edge_thresh (float): Score threshold for edge classification.
keynode_thresh (float): Score threshold for node
(``key``) classification.
Returns:
np.ndarray: The image with key, value and relation drawn on it.
"""
h, w = img.shape[:2]
vis_area_width = w // 3 * 2
vis_area_height = h
dist_key_to_value = vis_area_width // 2
dist_pair_to_pair = 30
bbox_x1 = dist_pair_to_pair
bbox_y1 = 0
new_w = vis_area_width
new_h = vis_area_height
pred_edge_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * 255
nodes = result['nodes'].detach().cpu()
texts = result['img_metas'][0]['ori_texts']
num_nodes = result['nodes'].size(0)
edges = result['edges'].detach().cpu()[:, -1].view(num_nodes, num_nodes)
# (i, j) will be a valid pair
# either edge_score(node_i->node_j) > edge_thresh
# or edge_score(node_j->node_i) > edge_thresh
pairs = (torch.max(edges, edges.T) > edge_thresh).nonzero(as_tuple=True)
pairs = (pairs[0].numpy().tolist(), pairs[1].numpy().tolist())
# 1. "for n1, n2 in zip(*pairs) if n1 < n2":
# Only (n1, n2) will be included if n1 < n2 but not (n2, n1), to
# avoid duplication.
# 2. "(n1, n2) if nodes[n1, 1] > nodes[n1, 2]":
# nodes[n1, 1] is the score that this node is predicted as key,
# nodes[n1, 2] is the score that this node is predicted as value.
# If nodes[n1, 1] > nodes[n1, 2], n1 will be the index of key,
# so that n2 will be the index of value.
result_pairs = [(n1, n2) if nodes[n1, 1] > nodes[n1, 2] else (n2, n1)
for n1, n2 in zip(*pairs) if n1 < n2]
result_pairs.sort()
result_pairs_score = [
torch.max(edges[n1, n2], edges[n2, n1]) for n1, n2 in result_pairs
]
key_current_idx = -1
pos_current = (-1, -1)
newline_flag = False
key_font_size = 15
value_font_size = 15
key_font_color = (0, 0, 0)
value_font_color = (0, 0, 255)
arrow_color = (0, 0, 255)
score_color = (0, 255, 0)
for pair, pair_score in zip(result_pairs, result_pairs_score):
key_idx = pair[0]
if nodes[key_idx, 1] < keynode_thresh:
continue
if key_idx != key_current_idx:
# move y-coords down for a new key
bbox_y1 += 10
# enlarge blank area to show key-value info
if newline_flag:
bbox_x1 += vis_area_width
tmp_img = np.ones(
(new_h, new_w + vis_area_width, 3), dtype=np.uint8) * 255
tmp_img[:new_h, :new_w] = pred_edge_img
pred_edge_img = tmp_img
new_w += vis_area_width
newline_flag = False
bbox_y1 = 10
key_text = texts[key_idx]
key_pos = (bbox_x1, bbox_y1)
value_idx = pair[1]
value_text = texts[value_idx]
value_pos = (bbox_x1 + dist_key_to_value, bbox_y1)
if key_idx != key_current_idx:
# draw text for a new key
key_current_idx = key_idx
pred_edge_img, text_sizes = draw_texts_by_pil(
pred_edge_img, [key_text],
draw_box=False,
on_ori_img=True,
font_size=key_font_size,
fill_color=key_font_color,
draw_pos=[key_pos],
return_text_size=True)
pos_right_bottom = (key_pos[0] + text_sizes[0][0],
key_pos[1] + text_sizes[0][1])
pos_current = (pos_right_bottom[0] + 5, bbox_y1 + 10)
pred_edge_img = cv2.arrowedLine(
pred_edge_img, (pos_right_bottom[0] + 5, bbox_y1 + 10),
(bbox_x1 + dist_key_to_value - 5, bbox_y1 + 10), arrow_color,
1)
score_pos_x = int(
(pos_right_bottom[0] + bbox_x1 + dist_key_to_value) / 2.)
score_pos_y = bbox_y1 + 10 - int(key_font_size * 0.3)
else:
# draw arrow from key to value
if newline_flag:
tmp_img = np.ones((new_h + dist_pair_to_pair, new_w, 3),
dtype=np.uint8) * 255
tmp_img[:new_h, :new_w] = pred_edge_img
pred_edge_img = tmp_img
new_h += dist_pair_to_pair
pred_edge_img = cv2.arrowedLine(pred_edge_img, pos_current,
(bbox_x1 + dist_key_to_value - 5,
bbox_y1 + 10), arrow_color, 1)
score_pos_x = int(
(pos_current[0] + bbox_x1 + dist_key_to_value - 5) / 2.)
score_pos_y = int((pos_current[1] + bbox_y1 + 10) / 2.)
# draw edge score
cv2.putText(pred_edge_img, '{:.2f}'.format(pair_score),
(score_pos_x, score_pos_y), cv2.FONT_HERSHEY_COMPLEX, 0.4,
score_color)
# draw text for value
pred_edge_img = draw_texts_by_pil(
pred_edge_img, [value_text],
draw_box=False,
on_ori_img=True,
font_size=value_font_size,
fill_color=value_font_color,
draw_pos=[value_pos],
return_text_size=False)
bbox_y1 += dist_pair_to_pair
if bbox_y1 + dist_pair_to_pair >= new_h:
newline_flag = True
return pred_edge_img
def imshow_edge(img,
result,
boxes,
show=False,
win_name='',
wait_time=-1,
out_file=None):
"""Display the prediction results of the nodes and edges of the KIE model.
Args:
img (np.ndarray): The original image.
result (dict): The result of model forward_test, including:
- img_metas (list[dict]): List of meta information dictionary.
- nodes (Tensor): Node prediction with size: \
number_node * node_classes.
- edges (Tensor): Edge prediction with size: number_edge * 2.
boxes (list): The text boxes corresponding to the nodes.
show (bool): Whether to show the image. Default: False.
win_name (str): The window name. Default: ''
wait_time (float): Value of waitKey param. Default: 0.
out_file (str or None): The filename to write the image.
Default: None.
Returns:
np.ndarray: The image with key, value and relation drawn on it.
"""
img = mmcv.imread(img)
h, w = img.shape[:2]
color_list = gen_color()
for i, box in enumerate(boxes):
new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
[box[0], box[3]]]
Pts = np.array([new_box], np.int32)
cv2.polylines(
img, [Pts.reshape((-1, 1, 2))],
True,
color=color_list[i % len(color_list)],
thickness=1)
pred_img_h = h
pred_img_w = w
pred_edge_img = draw_edge_result(img, result)
pred_img_h = max(pred_img_h, pred_edge_img.shape[0])
pred_img_w += pred_edge_img.shape[1]
vis_img = np.zeros((pred_img_h, pred_img_w, 3), dtype=np.uint8)
vis_img[:h, :w] = img
vis_img[:, w:] = 255
height_t, width_t = pred_edge_img.shape[:2]
vis_img[:height_t, w:(w + width_t)] = pred_edge_img
if show:
mmcv.imshow(vis_img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(vis_img, out_file)
res_dic = {
'boxes': boxes,
'nodes': result['nodes'].detach().cpu(),
'edges': result['edges'].detach().cpu(),
'metas': result['img_metas'][0]
}
mmcv.dump(res_dic, f'{out_file}_res.pkl')
return vis_img
|