Spaces:
Runtime error
Runtime error
File size: 12,079 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import numpy as np
import torch
from mmdet.datasets.builder import DATASETS
from mmocr.datasets import KIEDataset
@DATASETS.register_module()
class OpensetKIEDataset(KIEDataset):
"""Openset KIE classifies the nodes (i.e. text boxes) into bg/key/value
categories, and additionally learns key-value relationship among nodes.
Args:
ann_file (str): Annotation file path.
loader (dict): Dictionary to construct loader
to load annotation infos.
dict_file (str): Character dict file path.
img_prefix (str, optional): Image prefix to generate full
image path.
pipeline (list[dict]): Processing pipeline.
norm (float): Norm to map value from one range to another.
link_type (str): ``one-to-one`` | ``one-to-many`` |
``many-to-one`` | ``many-to-many``. For ``many-to-many``,
one key box can have many values and vice versa.
edge_thr (float): Score threshold for a valid edge.
test_mode (bool, optional): If True, try...except will
be turned off in __getitem__.
key_node_idx (int): Index of key in node classes.
value_node_idx (int): Index of value in node classes.
node_classes (int): Number of node classes.
"""
def __init__(self,
ann_file,
loader,
dict_file,
img_prefix='',
pipeline=None,
norm=10.,
link_type='one-to-one',
edge_thr=0.5,
test_mode=True,
key_node_idx=1,
value_node_idx=2,
node_classes=4):
super().__init__(ann_file, loader, dict_file, img_prefix, pipeline,
norm, False, test_mode)
assert link_type in [
'one-to-one', 'one-to-many', 'many-to-one', 'many-to-many', 'none'
]
self.link_type = link_type
self.data_dict = {x['file_name']: x for x in self.data_infos}
self.edge_thr = edge_thr
self.key_node_idx = key_node_idx
self.value_node_idx = value_node_idx
self.node_classes = node_classes
def pre_pipeline(self, results):
super().pre_pipeline(results)
results['ori_texts'] = results['ann_info']['ori_texts']
results['ori_boxes'] = results['ann_info']['ori_boxes']
def list_to_numpy(self, ann_infos):
results = super().list_to_numpy(ann_infos)
results.update(dict(ori_texts=ann_infos['texts']))
results.update(dict(ori_boxes=ann_infos['boxes']))
return results
def evaluate(self,
results,
metric='openset_f1',
metric_options=None,
**kwargs):
# Protect ``metric_options`` since it uses mutable value as default
metric_options = copy.deepcopy(metric_options)
metrics = metric if isinstance(metric, list) else [metric]
allowed_metrics = ['openset_f1']
for m in metrics:
if m not in allowed_metrics:
raise KeyError(f'metric {m} is not supported')
preds, gts = [], []
for result in results:
# data for preds
pred = self.decode_pred(result)
preds.append(pred)
# data for gts
gt = self.decode_gt(pred['filename'])
gts.append(gt)
return self.compute_openset_f1(preds, gts)
def _decode_pairs_gt(self, labels, edge_ids):
"""Find all pairs in gt.
The first index in the pair (n1, n2) is key.
"""
gt_pairs = []
for i, label in enumerate(labels):
if label == self.key_node_idx:
for j, edge_id in enumerate(edge_ids):
if edge_id == edge_ids[i] and labels[
j] == self.value_node_idx:
gt_pairs.append((i, j))
return gt_pairs
@staticmethod
def _decode_pairs_pred(nodes,
labels,
edges,
edge_thr=0.5,
link_type='one-to-one'):
"""Find all pairs in prediction.
The first index in the pair (n1, n2) is more likely to be a key
according to prediction in nodes.
"""
edges = torch.max(edges, edges.T)
if link_type in ['none', 'many-to-many']:
pair_inds = (edges > edge_thr).nonzero(as_tuple=True)
pred_pairs = [(n1.item(),
n2.item()) if nodes[n1, 1] > nodes[n1, 2] else
(n2.item(), n1.item()) for n1, n2 in zip(*pair_inds)
if n1 < n2]
pred_pairs = [(i, j) for i, j in pred_pairs
if labels[i] == 1 and labels[j] == 2]
else:
links = edges.clone()
links[links <= edge_thr] = -1
links[labels != 1, :] = -1
links[:, labels != 2] = -1
pred_pairs = []
while (links > -1).any():
i, j = np.unravel_index(torch.argmax(links), links.shape)
pred_pairs.append((i, j))
if link_type == 'one-to-one':
links[i, :] = -1
links[:, j] = -1
elif link_type == 'one-to-many':
links[:, j] = -1
elif link_type == 'many-to-one':
links[i, :] = -1
else:
raise ValueError(f'not supported link type {link_type}')
pairs_conf = [edges[i, j].item() for i, j in pred_pairs]
return pred_pairs, pairs_conf
def decode_pred(self, result):
"""Decode prediction.
Assemble boxes and predicted labels into bboxes, and convert edges into
matrix.
"""
filename = result['img_metas'][0]['ori_filename']
nodes = result['nodes'].cpu()
labels_conf, labels = torch.max(nodes, dim=-1)
num_nodes = nodes.size(0)
edges = result['edges'][:, -1].view(num_nodes, num_nodes).cpu()
annos = self.data_dict[filename]['annotations']
boxes = [x['box'] for x in annos]
texts = [x['text'] for x in annos]
bboxes = torch.Tensor(boxes)[:, [0, 1, 4, 5]]
bboxes = torch.cat([bboxes, labels[:, None].float()], -1)
pairs, pairs_conf = self._decode_pairs_pred(nodes, labels, edges,
self.edge_thr,
self.link_type)
pred = {
'filename': filename,
'boxes': boxes,
'bboxes': bboxes.tolist(),
'labels': labels.tolist(),
'labels_conf': labels_conf.tolist(),
'texts': texts,
'pairs': pairs,
'pairs_conf': pairs_conf
}
return pred
def decode_gt(self, filename):
"""Decode ground truth.
Assemble boxes and labels into bboxes.
"""
annos = self.data_dict[filename]['annotations']
labels = torch.Tensor([x['label'] for x in annos])
texts = [x['text'] for x in annos]
edge_ids = [x['edge'] for x in annos]
boxes = [x['box'] for x in annos]
bboxes = torch.Tensor(boxes)[:, [0, 1, 4, 5]]
bboxes = torch.cat([bboxes, labels[:, None].float()], -1)
pairs = self._decode_pairs_gt(labels, edge_ids)
gt = {
'filename': filename,
'boxes': boxes,
'bboxes': bboxes.tolist(),
'labels': labels.tolist(),
'labels_conf': [1. for _ in labels],
'texts': texts,
'pairs': pairs,
'pairs_conf': [1. for _ in pairs]
}
return gt
def compute_openset_f1(self, preds, gts):
"""Compute openset macro-f1 and micro-f1 score.
Args:
preds: (list[dict]): List of prediction results, including
keys: ``filename``, ``pairs``, etc.
gts: (list[dict]): List of ground-truth infos, including
keys: ``filename``, ``pairs``, etc.
Returns:
dict: Evaluation result with keys: ``node_openset_micro_f1``, \
``node_openset_macro_f1``, ``edge_openset_f1``.
"""
total_edge_hit_num, total_edge_gt_num, total_edge_pred_num = 0, 0, 0
total_node_hit_num, total_node_gt_num, total_node_pred_num = {}, {}, {}
node_inds = list(range(self.node_classes))
for node_idx in node_inds:
total_node_hit_num[node_idx] = 0
total_node_gt_num[node_idx] = 0
total_node_pred_num[node_idx] = 0
img_level_res = {}
for pred, gt in zip(preds, gts):
filename = pred['filename']
img_res = {}
# edge metric related
pairs_pred = pred['pairs']
pairs_gt = gt['pairs']
img_res['edge_hit_num'] = 0
for pair in pairs_gt:
if pair in pairs_pred:
img_res['edge_hit_num'] += 1
img_res['edge_recall'] = 1.0 * img_res['edge_hit_num'] / max(
1, len(pairs_gt))
img_res['edge_precision'] = 1.0 * img_res['edge_hit_num'] / max(
1, len(pairs_pred))
img_res['f1'] = 2 * img_res['edge_recall'] * img_res[
'edge_precision'] / max(
1, img_res['edge_recall'] + img_res['edge_precision'])
total_edge_hit_num += img_res['edge_hit_num']
total_edge_gt_num += len(pairs_gt)
total_edge_pred_num += len(pairs_pred)
# node metric related
nodes_pred = pred['labels']
nodes_gt = gt['labels']
for i, node_gt in enumerate(nodes_gt):
node_gt = int(node_gt)
total_node_gt_num[node_gt] += 1
if nodes_pred[i] == node_gt:
total_node_hit_num[node_gt] += 1
for node_pred in nodes_pred:
total_node_pred_num[node_pred] += 1
img_level_res[filename] = img_res
stats = {}
# edge f1
total_edge_recall = 1.0 * total_edge_hit_num / max(
1, total_edge_gt_num)
total_edge_precision = 1.0 * total_edge_hit_num / max(
1, total_edge_pred_num)
edge_f1 = 2 * total_edge_recall * total_edge_precision / max(
1, total_edge_recall + total_edge_precision)
stats = {'edge_openset_f1': edge_f1}
# node f1
cared_node_hit_num, cared_node_gt_num, cared_node_pred_num = 0, 0, 0
node_macro_metric = {}
for node_idx in node_inds:
if node_idx < 1 or node_idx > 2:
continue
cared_node_hit_num += total_node_hit_num[node_idx]
cared_node_gt_num += total_node_gt_num[node_idx]
cared_node_pred_num += total_node_pred_num[node_idx]
node_res = {}
node_res['recall'] = 1.0 * total_node_hit_num[node_idx] / max(
1, total_node_gt_num[node_idx])
node_res['precision'] = 1.0 * total_node_hit_num[node_idx] / max(
1, total_node_pred_num[node_idx])
node_res[
'f1'] = 2 * node_res['recall'] * node_res['precision'] / max(
1, node_res['recall'] + node_res['precision'])
node_macro_metric[node_idx] = node_res
node_micro_recall = 1.0 * cared_node_hit_num / max(
1, cared_node_gt_num)
node_micro_precision = 1.0 * cared_node_hit_num / max(
1, cared_node_pred_num)
node_micro_f1 = 2 * node_micro_recall * node_micro_precision / max(
1, node_micro_recall + node_micro_precision)
stats['node_openset_micro_f1'] = node_micro_f1
stats['node_openset_macro_f1'] = np.mean(
[v['f1'] for k, v in node_macro_metric.items()])
return stats
|