Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmcv.runner import BaseModule, ModuleList, auto_fp16 | |
from mmocr.models.builder import NECKS | |
class FPNF(BaseModule): | |
"""FPN-like fusion module in Shape Robust Text Detection with Progressive | |
Scale Expansion Network. | |
Args: | |
in_channels (list[int]): A list of number of input channels. | |
out_channels (int): The number of output channels. | |
fusion_type (str): Type of the final feature fusion layer. Available | |
options are "concat" and "add". | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
""" | |
def __init__(self, | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
fusion_type='concat', | |
init_cfg=dict( | |
type='Xavier', layer='Conv2d', distribution='uniform')): | |
super().__init__(init_cfg=init_cfg) | |
conv_cfg = None | |
norm_cfg = dict(type='BN') | |
act_cfg = dict(type='ReLU') | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.lateral_convs = ModuleList() | |
self.fpn_convs = ModuleList() | |
self.backbone_end_level = len(in_channels) | |
for i in range(self.backbone_end_level): | |
l_conv = ConvModule( | |
in_channels[i], | |
out_channels, | |
1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False) | |
self.lateral_convs.append(l_conv) | |
if i < self.backbone_end_level - 1: | |
fpn_conv = ConvModule( | |
out_channels, | |
out_channels, | |
3, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False) | |
self.fpn_convs.append(fpn_conv) | |
self.fusion_type = fusion_type | |
if self.fusion_type == 'concat': | |
feature_channels = 1024 | |
elif self.fusion_type == 'add': | |
feature_channels = 256 | |
else: | |
raise NotImplementedError | |
self.output_convs = ConvModule( | |
feature_channels, | |
out_channels, | |
3, | |
padding=1, | |
conv_cfg=None, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
inplace=False) | |
def forward(self, inputs): | |
""" | |
Args: | |
inputs (list[Tensor]): Each tensor has the shape of | |
:math:`(N, C_i, H_i, W_i)`. It usually expects 4 tensors | |
(C2-C5 features) from ResNet. | |
Returns: | |
Tensor: A tensor of shape :math:`(N, C_{out}, H_0, W_0)` where | |
:math:`C_{out}` is ``out_channels``. | |
""" | |
assert len(inputs) == len(self.in_channels) | |
# build laterals | |
laterals = [ | |
lateral_conv(inputs[i]) | |
for i, lateral_conv in enumerate(self.lateral_convs) | |
] | |
# build top-down path | |
used_backbone_levels = len(laterals) | |
for i in range(used_backbone_levels - 1, 0, -1): | |
# step 1: upsample to level i-1 size and add level i-1 | |
prev_shape = laterals[i - 1].shape[2:] | |
laterals[i - 1] += F.interpolate( | |
laterals[i], size=prev_shape, mode='nearest') | |
# step 2: smooth level i-1 | |
laterals[i - 1] = self.fpn_convs[i - 1](laterals[i - 1]) | |
# upsample and cont | |
bottom_shape = laterals[0].shape[2:] | |
for i in range(1, used_backbone_levels): | |
laterals[i] = F.interpolate( | |
laterals[i], size=bottom_shape, mode='nearest') | |
if self.fusion_type == 'concat': | |
out = torch.cat(laterals, 1) | |
elif self.fusion_type == 'add': | |
out = laterals[0] | |
for i in range(1, used_backbone_levels): | |
out += laterals[i] | |
else: | |
raise NotImplementedError | |
out = self.output_convs(out) | |
return out | |