Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
import tempfile | |
import mmcv | |
import numpy as np | |
from mmocr.datasets.icdar_dataset import IcdarDataset | |
def _create_dummy_icdar_json(json_name): | |
image_1 = { | |
'id': 0, | |
'width': 640, | |
'height': 640, | |
'file_name': 'fake_name.jpg', | |
} | |
image_2 = { | |
'id': 1, | |
'width': 640, | |
'height': 640, | |
'file_name': 'fake_name1.jpg', | |
} | |
annotation_1 = { | |
'id': 1, | |
'image_id': 0, | |
'category_id': 0, | |
'area': 400, | |
'bbox': [50, 60, 20, 20], | |
'iscrowd': 0, | |
'segmentation': [[50, 60, 70, 60, 70, 80, 50, 80]] | |
} | |
annotation_2 = { | |
'id': 2, | |
'image_id': 0, | |
'category_id': 0, | |
'area': 900, | |
'bbox': [100, 120, 30, 30], | |
'iscrowd': 0, | |
'segmentation': [[100, 120, 130, 120, 120, 150, 100, 150]] | |
} | |
annotation_3 = { | |
'id': 3, | |
'image_id': 0, | |
'category_id': 0, | |
'area': 1600, | |
'bbox': [150, 160, 40, 40], | |
'iscrowd': 1, | |
'segmentation': [[150, 160, 190, 160, 190, 200, 150, 200]] | |
} | |
annotation_4 = { | |
'id': 4, | |
'image_id': 0, | |
'category_id': 0, | |
'area': 10000, | |
'bbox': [250, 260, 100, 100], | |
'iscrowd': 1, | |
'segmentation': [[250, 260, 350, 260, 350, 360, 250, 360]] | |
} | |
annotation_5 = { | |
'id': 5, | |
'image_id': 1, | |
'category_id': 0, | |
'area': 10000, | |
'bbox': [250, 260, 100, 100], | |
'iscrowd': 1, | |
'segmentation': [[250, 260, 350, 260, 350, 360, 250, 360]] | |
} | |
categories = [{ | |
'id': 0, | |
'name': 'text', | |
'supercategory': 'text', | |
}] | |
fake_json = { | |
'images': [image_1, image_2], | |
'annotations': | |
[annotation_1, annotation_2, annotation_3, annotation_4, annotation_5], | |
'categories': | |
categories | |
} | |
mmcv.dump(fake_json, json_name) | |
def test_icdar_dataset(): | |
tmp_dir = tempfile.TemporaryDirectory() | |
# create dummy data | |
fake_json_file = osp.join(tmp_dir.name, 'fake_data.json') | |
_create_dummy_icdar_json(fake_json_file) | |
# test initialization | |
dataset = IcdarDataset(ann_file=fake_json_file, pipeline=[]) | |
assert dataset.CLASSES == ('text') | |
assert dataset.img_ids == [0, 1] | |
assert dataset.select_first_k == -1 | |
# test _parse_ann_info | |
ann = dataset.get_ann_info(0) | |
assert np.allclose(ann['bboxes'], | |
[[50., 60., 70., 80.], [100., 120., 130., 150.]]) | |
assert np.allclose(ann['labels'], [0, 0]) | |
assert np.allclose(ann['bboxes_ignore'], | |
[[150., 160., 190., 200.], [250., 260., 350., 360.]]) | |
assert np.allclose(ann['masks'], | |
[[[50, 60, 70, 60, 70, 80, 50, 80]], | |
[[100, 120, 130, 120, 120, 150, 100, 150]]]) | |
assert np.allclose(ann['masks_ignore'], | |
[[[150, 160, 190, 160, 190, 200, 150, 200]], | |
[[250, 260, 350, 260, 350, 360, 250, 360]]]) | |
assert dataset.cat_ids == [0] | |
tmp_dir.cleanup() | |
# test rank output | |
# result = [[]] | |
# out_file = tempfile.NamedTemporaryFile().name | |
# with pytest.raises(AssertionError): | |
# dataset.output_ranklist(result, out_file) | |
# result = [{'hmean': 1}, {'hmean': 0.5}] | |
# output = dataset.output_ranklist(result, out_file) | |
# assert output[0]['hmean'] == 0.5 | |
# test get_gt_mask | |
# output = dataset.get_gt_mask() | |
# assert np.allclose(output[0][0], | |
# [[50, 60, 70, 60, 70, 80, 50, 80], | |
# [100, 120, 130, 120, 120, 150, 100, 150]]) | |
# assert output[0][1] == [] | |
# assert np.allclose(output[1][0], | |
# [[150, 160, 190, 160, 190, 200, 150, 200], | |
# [250, 260, 350, 260, 350, 360, 250, 360]]) | |
# assert np.allclose(output[1][1], | |
# [[250, 260, 350, 260, 350, 360, 250, 360]]) | |
# test evluation | |
metrics = ['hmean-iou', 'hmean-ic13'] | |
results = [{ | |
'boundary_result': [[50, 60, 70, 60, 70, 80, 50, 80, 1], | |
[100, 120, 130, 120, 120, 150, 100, 150, 1]] | |
}, { | |
'boundary_result': [] | |
}] | |
output = dataset.evaluate(results, metrics) | |
assert output['hmean-iou:hmean'] == 1 | |
assert output['hmean-ic13:hmean'] == 1 | |