tomofi's picture
Add application file
2366e36
raw
history blame
5.41 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn.functional as F
import mmocr.utils as utils
from mmocr.models.builder import CONVERTORS
from .base import BaseConvertor
@CONVERTORS.register_module()
class CTCConvertor(BaseConvertor):
"""Convert between text, index and tensor for CTC loss-based pipeline.
Args:
dict_type (str): Type of dict, should be either 'DICT36' or 'DICT90'.
dict_file (None|str): Character dict file path. If not none, the file
is of higher priority than dict_type.
dict_list (None|list[str]): Character list. If not none, the list
is of higher priority than dict_type, but lower than dict_file.
with_unknown (bool): If True, add `UKN` token to class.
lower (bool): If True, convert original string to lower case.
"""
def __init__(self,
dict_type='DICT90',
dict_file=None,
dict_list=None,
with_unknown=True,
lower=False,
**kwargs):
super().__init__(dict_type, dict_file, dict_list)
assert isinstance(with_unknown, bool)
assert isinstance(lower, bool)
self.with_unknown = with_unknown
self.lower = lower
self.update_dict()
def update_dict(self):
# CTC-blank
blank_token = '<BLK>'
self.blank_idx = 0
self.idx2char.insert(0, blank_token)
# unknown
self.unknown_idx = None
if self.with_unknown:
self.idx2char.append('<UKN>')
self.unknown_idx = len(self.idx2char) - 1
# update char2idx
self.char2idx = {}
for idx, char in enumerate(self.idx2char):
self.char2idx[char] = idx
def str2tensor(self, strings):
"""Convert text-string to ctc-loss input tensor.
Args:
strings (list[str]): ['hello', 'world'].
Returns:
dict (str: tensor | list[tensor]):
tensors (list[tensor]): [torch.Tensor([1,2,3,3,4]),
torch.Tensor([5,4,6,3,7])].
flatten_targets (tensor): torch.Tensor([1,2,3,3,4,5,4,6,3,7]).
target_lengths (tensor): torch.IntTensot([5,5]).
"""
assert utils.is_type_list(strings, str)
tensors = []
indexes = self.str2idx(strings)
for index in indexes:
tensor = torch.IntTensor(index)
tensors.append(tensor)
target_lengths = torch.IntTensor([len(t) for t in tensors])
flatten_target = torch.cat(tensors)
return {
'targets': tensors,
'flatten_targets': flatten_target,
'target_lengths': target_lengths
}
def tensor2idx(self, output, img_metas, topk=1, return_topk=False):
"""Convert model output tensor to index-list.
Args:
output (tensor): The model outputs with size: N * T * C.
img_metas (list[dict]): Each dict contains one image info.
topk (int): The highest k classes to be returned.
return_topk (bool): Whether to return topk or just top1.
Returns:
indexes (list[list[int]]): [[1,2,3,3,4], [5,4,6,3,7]].
scores (list[list[float]]): [[0.9,0.8,0.95,0.97,0.94],
[0.9,0.9,0.98,0.97,0.96]]
(
indexes_topk (list[list[list[int]->len=topk]]):
scores_topk (list[list[list[float]->len=topk]])
).
"""
assert utils.is_type_list(img_metas, dict)
assert len(img_metas) == output.size(0)
assert isinstance(topk, int)
assert topk >= 1
valid_ratios = [
img_meta.get('valid_ratio', 1.0) for img_meta in img_metas
]
batch_size = output.size(0)
output = F.softmax(output, dim=2)
output = output.cpu().detach()
batch_topk_value, batch_topk_idx = output.topk(topk, dim=2)
batch_max_idx = batch_topk_idx[:, :, 0]
scores_topk, indexes_topk = [], []
scores, indexes = [], []
feat_len = output.size(1)
for b in range(batch_size):
valid_ratio = valid_ratios[b]
decode_len = min(feat_len, math.ceil(feat_len * valid_ratio))
pred = batch_max_idx[b, :]
select_idx = []
prev_idx = self.blank_idx
for t in range(decode_len):
tmp_value = pred[t].item()
if tmp_value not in (prev_idx, self.blank_idx):
select_idx.append(t)
prev_idx = tmp_value
select_idx = torch.LongTensor(select_idx)
topk_value = torch.index_select(batch_topk_value[b, :, :], 0,
select_idx) # valid_seqlen * topk
topk_idx = torch.index_select(batch_topk_idx[b, :, :], 0,
select_idx)
topk_idx_list, topk_value_list = topk_idx.numpy().tolist(
), topk_value.numpy().tolist()
indexes_topk.append(topk_idx_list)
scores_topk.append(topk_value_list)
indexes.append([x[0] for x in topk_idx_list])
scores.append([x[0] for x in topk_value_list])
if return_topk:
return indexes_topk, scores_topk
return indexes, scores