MMOCR / tools /data /textdet /ctw1500_converter.py
tomofi's picture
Add application file
2366e36
raw
history blame
7.23 kB
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import os.path as osp
import xml.etree.ElementTree as ET
from functools import partial
import mmcv
import numpy as np
from shapely.geometry import Polygon
from mmocr.utils import convert_annotations, list_from_file
def collect_files(img_dir, gt_dir, split):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir(str): The image directory
gt_dir(str): The groundtruth directory
split(str): The split of dataset. Namely: training or test
Returns:
files(list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
files = []
if split == 'training':
for img_file in imgs_list:
gt_file = gt_dir + '/' + osp.splitext(
osp.basename(img_file))[0] + '.xml'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
elif split == 'test':
for img_file in imgs_list:
gt_file = gt_dir + '/000' + osp.splitext(
osp.basename(img_file))[0] + '.txt'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, split, nproc=1):
"""Collect the annotation information.
Args:
files(list): The list of tuples (image_file, groundtruth_file)
split(str): The split of dataset. Namely: training or test
nproc(int): The number of process to collect annotations
Returns:
images(list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(split, str)
assert isinstance(nproc, int)
load_img_info_with_split = partial(load_img_info, split=split)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info_with_split, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info_with_split, files)
return images
def load_txt_info(gt_file, img_info):
anno_info = []
for line in list_from_file(gt_file):
# each line has one ploygen (n vetices), and one text.
# e.g., 695,885,866,888,867,1146,696,1143,####Latin 9
line = line.strip()
strs = line.split(',')
category_id = 1
assert strs[28][0] == '#'
xy = [int(x) for x in strs[0:28]]
assert len(xy) == 28
coordinates = np.array(xy).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
text = strs[28][4:]
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
text=text,
segmentation=[xy])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_xml_info(gt_file, img_info):
obj = ET.parse(gt_file)
anno_info = []
for image in obj.getroot(): # image
for box in image: # image
h = box.attrib['height']
w = box.attrib['width']
x = box.attrib['left']
y = box.attrib['top']
text = box[0].text
segs = box[1].text
pts = segs.strip().split(',')
pts = [int(x) for x in pts]
assert len(pts) == 28
# pts = []
# for iter in range(2,len(box)):
# pts.extend([int(box[iter].attrib['x']),
# int(box[iter].attrib['y'])])
iscrowd = 0
category_id = 1
bbox = [int(x), int(y), int(w), int(h)]
coordinates = np.array(pts).reshape(-1, 2)
polygon = Polygon(coordinates)
area = polygon.area
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
text=text,
segmentation=[pts])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_img_info(files, split):
"""Load the information of one image.
Args:
files(tuple): The tuple of (img_file, groundtruth_file)
split(str): The split of dataset: training or test
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
assert isinstance(split, str)
img_file, gt_file = files
# read imgs with ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
# anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
if split == 'training':
img_info = load_xml_info(gt_file, img_info)
elif split == 'test':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Convert ctw1500 annotations to COCO format')
parser.add_argument('root_path', help='ctw1500 root path')
parser.add_argument('-o', '--out-dir', help='output path')
parser.add_argument(
'--split-list',
nargs='+',
help='a list of splits. e.g., "--split-list training test"')
parser.add_argument(
'--nproc', default=1, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
out_dir = args.out_dir if args.out_dir else root_path
mmcv.mkdir_or_exist(out_dir)
img_dir = osp.join(root_path, 'imgs')
gt_dir = osp.join(root_path, 'annotations')
set_name = {}
for split in args.split_list:
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmcv.Timer(print_tmpl='It takes {}s to convert icdar annotation'):
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split), split)
image_infos = collect_annotations(files, split, nproc=args.nproc)
convert_annotations(image_infos, osp.join(out_dir, json_name))
if __name__ == '__main__':
main()