Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
from shapely.geometry import Polygon as plg | |
import mmocr.utils as utils | |
def ignore_pred(pred_boxes, gt_ignored_index, gt_polys, precision_thr): | |
"""Ignore the predicted box if it hits any ignored ground truth. | |
Args: | |
pred_boxes (list[ndarray or list]): The predicted boxes of one image. | |
gt_ignored_index (list[int]): The ignored ground truth index list. | |
gt_polys (list[Polygon]): The polygon list of one image. | |
precision_thr (float): The precision threshold. | |
Returns: | |
pred_polys (list[Polygon]): The predicted polygon list. | |
pred_points (list[list]): The predicted box list represented | |
by point sequences. | |
pred_ignored_index (list[int]): The ignored text index list. | |
""" | |
assert isinstance(pred_boxes, list) | |
assert isinstance(gt_ignored_index, list) | |
assert isinstance(gt_polys, list) | |
assert 0 <= precision_thr <= 1 | |
pred_polys = [] | |
pred_points = [] | |
pred_ignored_index = [] | |
gt_ignored_num = len(gt_ignored_index) | |
# get detection polygons | |
for box_id, box in enumerate(pred_boxes): | |
poly = points2polygon(box) | |
pred_polys.append(poly) | |
pred_points.append(box) | |
if gt_ignored_num < 1: | |
continue | |
# ignore the current detection box | |
# if its overlap with any ignored gt > precision_thr | |
for ignored_box_id in gt_ignored_index: | |
ignored_box = gt_polys[ignored_box_id] | |
inter_area = poly_intersection(poly, ignored_box) | |
area = poly.area | |
precision = 0 if area == 0 else inter_area / area | |
if precision > precision_thr: | |
pred_ignored_index.append(box_id) | |
break | |
return pred_polys, pred_points, pred_ignored_index | |
def compute_hmean(accum_hit_recall, accum_hit_prec, gt_num, pred_num): | |
"""Compute hmean given hit number, ground truth number and prediction | |
number. | |
Args: | |
accum_hit_recall (int|float): Accumulated hits for computing recall. | |
accum_hit_prec (int|float): Accumulated hits for computing precision. | |
gt_num (int): Ground truth number. | |
pred_num (int): Prediction number. | |
Returns: | |
recall (float): The recall value. | |
precision (float): The precision value. | |
hmean (float): The hmean value. | |
""" | |
assert isinstance(accum_hit_recall, (float, int)) | |
assert isinstance(accum_hit_prec, (float, int)) | |
assert isinstance(gt_num, int) | |
assert isinstance(pred_num, int) | |
assert accum_hit_recall >= 0.0 | |
assert accum_hit_prec >= 0.0 | |
assert gt_num >= 0.0 | |
assert pred_num >= 0.0 | |
if gt_num == 0: | |
recall = 1.0 | |
precision = 0.0 if pred_num > 0 else 1.0 | |
else: | |
recall = float(accum_hit_recall) / gt_num | |
precision = 0.0 if pred_num == 0 else float(accum_hit_prec) / pred_num | |
denom = recall + precision | |
hmean = 0.0 if denom == 0 else (2.0 * precision * recall / denom) | |
return recall, precision, hmean | |
def box2polygon(box): | |
"""Convert box to polygon. | |
Args: | |
box (ndarray or list): A ndarray or a list of shape (4) | |
that indicates 2 points. | |
Returns: | |
polygon (Polygon): A polygon object. | |
""" | |
if isinstance(box, list): | |
box = np.array(box) | |
assert isinstance(box, np.ndarray) | |
assert box.size == 4 | |
boundary = np.array( | |
[box[0], box[1], box[2], box[1], box[2], box[3], box[0], box[3]]) | |
point_mat = boundary.reshape([-1, 2]) | |
return plg(point_mat) | |
def points2polygon(points): | |
"""Convert k points to 1 polygon. | |
Args: | |
points (ndarray or list): A ndarray or a list of shape (2k) | |
that indicates k points. | |
Returns: | |
polygon (Polygon): A polygon object. | |
""" | |
if isinstance(points, list): | |
points = np.array(points) | |
assert isinstance(points, np.ndarray) | |
assert (points.size % 2 == 0) and (points.size >= 8) | |
point_mat = points.reshape([-1, 2]) | |
return plg(point_mat) | |
def poly_make_valid(poly): | |
"""Convert a potentially invalid polygon to a valid one by eliminating | |
self-crossing or self-touching parts. | |
Args: | |
poly (Polygon): A polygon needed to be converted. | |
Returns: | |
A valid polygon. | |
""" | |
return poly if poly.is_valid else poly.buffer(0) | |
def poly_intersection(poly_det, poly_gt, invalid_ret=None, return_poly=False): | |
"""Calculate the intersection area between two polygon. | |
Args: | |
poly_det (Polygon): A polygon predicted by detector. | |
poly_gt (Polygon): A gt polygon. | |
invalid_ret (None|float|int): The return value when the invalid polygon | |
exists. If it is not specified, the function allows the computation | |
to proceed with invalid polygons by cleaning the their | |
self-touching or self-crossing parts. | |
return_poly (bool): Whether to return the polygon of the intersection | |
area. | |
Returns: | |
intersection_area (float): The intersection area between two polygons. | |
poly_obj (Polygon, optional): The Polygon object of the intersection | |
area. Set as `None` if the input is invalid. | |
""" | |
assert isinstance(poly_det, plg) | |
assert isinstance(poly_gt, plg) | |
assert invalid_ret is None or isinstance(invalid_ret, float) or \ | |
isinstance(invalid_ret, int) | |
if invalid_ret is None: | |
poly_det = poly_make_valid(poly_det) | |
poly_gt = poly_make_valid(poly_gt) | |
poly_obj = None | |
area = invalid_ret | |
if poly_det.is_valid and poly_gt.is_valid: | |
poly_obj = poly_det.intersection(poly_gt) | |
area = poly_obj.area | |
return (area, poly_obj) if return_poly else area | |
def poly_union(poly_det, poly_gt, invalid_ret=None, return_poly=False): | |
"""Calculate the union area between two polygon. | |
Args: | |
poly_det (Polygon): A polygon predicted by detector. | |
poly_gt (Polygon): A gt polygon. | |
invalid_ret (None|float|int): The return value when the invalid polygon | |
exists. If it is not specified, the function allows the computation | |
to proceed with invalid polygons by cleaning the their | |
self-touching or self-crossing parts. | |
return_poly (bool): Whether to return the polygon of the intersection | |
area. | |
Returns: | |
union_area (float): The union area between two polygons. | |
poly_obj (Polygon|MultiPolygon, optional): The Polygon or MultiPolygon | |
object of the union of the inputs. The type of object depends on | |
whether they intersect or not. Set as `None` if the input is | |
invalid. | |
""" | |
assert isinstance(poly_det, plg) | |
assert isinstance(poly_gt, plg) | |
assert invalid_ret is None or isinstance(invalid_ret, float) or \ | |
isinstance(invalid_ret, int) | |
if invalid_ret is None: | |
poly_det = poly_make_valid(poly_det) | |
poly_gt = poly_make_valid(poly_gt) | |
poly_obj = None | |
area = invalid_ret | |
if poly_det.is_valid and poly_gt.is_valid: | |
poly_obj = poly_det.union(poly_gt) | |
area = poly_obj.area | |
return (area, poly_obj) if return_poly else area | |
def boundary_iou(src, target, zero_division=0): | |
"""Calculate the IOU between two boundaries. | |
Args: | |
src (list): Source boundary. | |
target (list): Target boundary. | |
zero_division (int|float): The return value when invalid | |
boundary exists. | |
Returns: | |
iou (float): The iou between two boundaries. | |
""" | |
assert utils.valid_boundary(src, False) | |
assert utils.valid_boundary(target, False) | |
src_poly = points2polygon(src) | |
target_poly = points2polygon(target) | |
return poly_iou(src_poly, target_poly, zero_division=zero_division) | |
def poly_iou(poly_det, poly_gt, zero_division=0): | |
"""Calculate the IOU between two polygons. | |
Args: | |
poly_det (Polygon): A polygon predicted by detector. | |
poly_gt (Polygon): A gt polygon. | |
zero_division (int|float): The return value when invalid | |
polygon exists. | |
Returns: | |
iou (float): The IOU between two polygons. | |
""" | |
assert isinstance(poly_det, plg) | |
assert isinstance(poly_gt, plg) | |
area_inters = poly_intersection(poly_det, poly_gt) | |
area_union = poly_union(poly_det, poly_gt) | |
return area_inters / area_union if area_union != 0 else zero_division | |
def one2one_match_ic13(gt_id, det_id, recall_mat, precision_mat, recall_thr, | |
precision_thr): | |
"""One-to-One match gt and det with icdar2013 standards. | |
Args: | |
gt_id (int): The ground truth id index. | |
det_id (int): The detection result id index. | |
recall_mat (ndarray): `gt_num x det_num` matrix with element (i,j) | |
being the recall ratio of gt i to det j. | |
precision_mat (ndarray): `gt_num x det_num` matrix with element (i,j) | |
being the precision ratio of gt i to det j. | |
recall_thr (float): The recall threshold. | |
precision_thr (float): The precision threshold. | |
Returns: | |
True|False: Whether the gt and det are matched. | |
""" | |
assert isinstance(gt_id, int) | |
assert isinstance(det_id, int) | |
assert isinstance(recall_mat, np.ndarray) | |
assert isinstance(precision_mat, np.ndarray) | |
assert 0 <= recall_thr <= 1 | |
assert 0 <= precision_thr <= 1 | |
cont = 0 | |
for i in range(recall_mat.shape[1]): | |
if recall_mat[gt_id, | |
i] > recall_thr and precision_mat[gt_id, | |
i] > precision_thr: | |
cont += 1 | |
if cont != 1: | |
return False | |
cont = 0 | |
for i in range(recall_mat.shape[0]): | |
if recall_mat[i, det_id] > recall_thr and precision_mat[ | |
i, det_id] > precision_thr: | |
cont += 1 | |
if cont != 1: | |
return False | |
if recall_mat[gt_id, det_id] > recall_thr and precision_mat[ | |
gt_id, det_id] > precision_thr: | |
return True | |
return False | |
def one2many_match_ic13(gt_id, recall_mat, precision_mat, recall_thr, | |
precision_thr, gt_match_flag, det_match_flag, | |
det_ignored_index): | |
"""One-to-Many match gt and detections with icdar2013 standards. | |
Args: | |
gt_id (int): gt index. | |
recall_mat (ndarray): `gt_num x det_num` matrix with element (i,j) | |
being the recall ratio of gt i to det j. | |
precision_mat (ndarray): `gt_num x det_num` matrix with element (i,j) | |
being the precision ratio of gt i to det j. | |
recall_thr (float): The recall threshold. | |
precision_thr (float): The precision threshold. | |
gt_match_flag (ndarray): An array indicates each gt matched already. | |
det_match_flag (ndarray): An array indicates each box has been | |
matched already or not. | |
det_ignored_index (list): A list indicates each detection box can be | |
ignored or not. | |
Returns: | |
tuple (True|False, list): The first indicates the gt is matched or not; | |
the second is the matched detection ids. | |
""" | |
assert isinstance(gt_id, int) | |
assert isinstance(recall_mat, np.ndarray) | |
assert isinstance(precision_mat, np.ndarray) | |
assert 0 <= recall_thr <= 1 | |
assert 0 <= precision_thr <= 1 | |
assert isinstance(gt_match_flag, list) | |
assert isinstance(det_match_flag, list) | |
assert isinstance(det_ignored_index, list) | |
many_sum = 0. | |
det_ids = [] | |
for det_id in range(recall_mat.shape[1]): | |
if gt_match_flag[gt_id] == 0 and det_match_flag[ | |
det_id] == 0 and det_id not in det_ignored_index: | |
if precision_mat[gt_id, det_id] >= precision_thr: | |
many_sum += recall_mat[gt_id, det_id] | |
det_ids.append(det_id) | |
if many_sum >= recall_thr: | |
return True, det_ids | |
return False, [] | |
def many2one_match_ic13(det_id, recall_mat, precision_mat, recall_thr, | |
precision_thr, gt_match_flag, det_match_flag, | |
gt_ignored_index): | |
"""Many-to-One match gt and detections with icdar2013 standards. | |
Args: | |
det_id (int): Detection index. | |
recall_mat (ndarray): `gt_num x det_num` matrix with element (i,j) | |
being the recall ratio of gt i to det j. | |
precision_mat (ndarray): `gt_num x det_num` matrix with element (i,j) | |
being the precision ratio of gt i to det j. | |
recall_thr (float): The recall threshold. | |
precision_thr (float): The precision threshold. | |
gt_match_flag (ndarray): An array indicates each gt has been matched | |
already. | |
det_match_flag (ndarray): An array indicates each detection box has | |
been matched already or not. | |
gt_ignored_index (list): A list indicates each gt box can be ignored | |
or not. | |
Returns: | |
tuple (True|False, list): The first indicates the detection is matched | |
or not; the second is the matched gt ids. | |
""" | |
assert isinstance(det_id, int) | |
assert isinstance(recall_mat, np.ndarray) | |
assert isinstance(precision_mat, np.ndarray) | |
assert 0 <= recall_thr <= 1 | |
assert 0 <= precision_thr <= 1 | |
assert isinstance(gt_match_flag, list) | |
assert isinstance(det_match_flag, list) | |
assert isinstance(gt_ignored_index, list) | |
many_sum = 0. | |
gt_ids = [] | |
for gt_id in range(recall_mat.shape[0]): | |
if gt_match_flag[gt_id] == 0 and det_match_flag[ | |
det_id] == 0 and gt_id not in gt_ignored_index: | |
if recall_mat[gt_id, det_id] >= recall_thr: | |
many_sum += precision_mat[gt_id, det_id] | |
gt_ids.append(gt_id) | |
if many_sum >= precision_thr: | |
return True, gt_ids | |
return False, [] | |
def points_center(points): | |
assert isinstance(points, np.ndarray) | |
assert points.size % 2 == 0 | |
points = points.reshape([-1, 2]) | |
return np.mean(points, axis=0) | |
def point_distance(p1, p2): | |
assert isinstance(p1, np.ndarray) | |
assert isinstance(p2, np.ndarray) | |
assert p1.size == 2 | |
assert p2.size == 2 | |
dist = np.square(p2 - p1) | |
dist = np.sum(dist) | |
dist = np.sqrt(dist) | |
return dist | |
def box_center_distance(b1, b2): | |
assert isinstance(b1, np.ndarray) | |
assert isinstance(b2, np.ndarray) | |
return point_distance(points_center(b1), points_center(b2)) | |
def box_diag(box): | |
assert isinstance(box, np.ndarray) | |
assert box.size == 8 | |
return point_distance(box[0:2], box[4:6]) | |
def filter_2dlist_result(results, scores, score_thr): | |
"""Find out detected results whose score > score_thr. | |
Args: | |
results (list[list[float]]): The result list. | |
score (list): The score list. | |
score_thr (float): The score threshold. | |
Returns: | |
valid_results (list[list[float]]): The valid results. | |
valid_score (list[float]): The scores which correspond to the valid | |
results. | |
""" | |
assert isinstance(results, list) | |
assert len(results) == len(scores) | |
assert isinstance(score_thr, float) | |
assert 0 <= score_thr <= 1 | |
inds = np.array(scores) > score_thr | |
valid_results = [results[idx] for idx in np.where(inds)[0].tolist()] | |
valid_scores = [scores[idx] for idx in np.where(inds)[0].tolist()] | |
return valid_results, valid_scores | |
def filter_result(results, scores, score_thr): | |
"""Find out detected results whose score > score_thr. | |
Args: | |
results (ndarray): The results matrix of shape (n, k). | |
score (ndarray): The score vector of shape (n,). | |
score_thr (float): The score threshold. | |
Returns: | |
valid_results (ndarray): The valid results of shape (m,k) with m<=n. | |
valid_score (ndarray): The scores which correspond to the | |
valid results. | |
""" | |
assert results.ndim == 2 | |
assert scores.shape[0] == results.shape[0] | |
assert isinstance(score_thr, float) | |
assert 0 <= score_thr <= 1 | |
inds = scores > score_thr | |
valid_results = results[inds, :] | |
valid_scores = scores[inds] | |
return valid_results, valid_scores | |
def select_top_boundary(boundaries_list, scores_list, score_thr): | |
"""Select poly boundaries with scores >= score_thr. | |
Args: | |
boundaries_list (list[list[list[float]]]): List of boundaries. | |
The 1st, 2nd, and 3rd indices are for image, text and | |
vertice, respectively. | |
scores_list (list(list[float])): List of lists of scores. | |
score_thr (float): The score threshold to filter out bboxes. | |
Returns: | |
selected_bboxes (list[list[list[float]]]): List of boundaries. | |
The 1st, 2nd, and 3rd indices are for image, text and vertice, | |
respectively. | |
""" | |
assert isinstance(boundaries_list, list) | |
assert isinstance(scores_list, list) | |
assert isinstance(score_thr, float) | |
assert len(boundaries_list) == len(scores_list) | |
assert 0 <= score_thr <= 1 | |
selected_boundaries = [] | |
for boundary, scores in zip(boundaries_list, scores_list): | |
if len(scores) > 0: | |
assert len(scores) == len(boundary) | |
inds = [ | |
iter for iter in range(len(scores)) | |
if scores[iter] >= score_thr | |
] | |
selected_boundaries.append([boundary[i] for i in inds]) | |
else: | |
selected_boundaries.append(boundary) | |
return selected_boundaries | |
def select_bboxes_via_score(bboxes_list, scores_list, score_thr): | |
"""Select bboxes with scores >= score_thr. | |
Args: | |
bboxes_list (list[ndarray]): List of bboxes. Each element is ndarray of | |
shape (n,8) | |
scores_list (list(list[float])): List of lists of scores. | |
score_thr (float): The score threshold to filter out bboxes. | |
Returns: | |
selected_bboxes (list[ndarray]): List of bboxes. Each element is | |
ndarray of shape (m,8) with m<=n. | |
""" | |
assert isinstance(bboxes_list, list) | |
assert isinstance(scores_list, list) | |
assert isinstance(score_thr, float) | |
assert len(bboxes_list) == len(scores_list) | |
assert 0 <= score_thr <= 1 | |
selected_bboxes = [] | |
for bboxes, scores in zip(bboxes_list, scores_list): | |
if len(scores) > 0: | |
assert len(scores) == bboxes.shape[0] | |
inds = [ | |
iter for iter in range(len(scores)) | |
if scores[iter] >= score_thr | |
] | |
selected_bboxes.append(bboxes[inds, :]) | |
else: | |
selected_bboxes.append(bboxes) | |
return selected_bboxes | |