Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch.nn as nn | |
from mmcv.cnn import ACTIVATION_LAYERS as MMCV_ACTIVATION_LAYERS | |
from mmcv.cnn import UPSAMPLE_LAYERS as MMCV_UPSAMPLE_LAYERS | |
from mmcv.utils import Registry, build_from_cfg | |
from mmdet.models.builder import BACKBONES as MMDET_BACKBONES | |
CONVERTORS = Registry('convertor') | |
ENCODERS = Registry('encoder') | |
DECODERS = Registry('decoder') | |
PREPROCESSOR = Registry('preprocessor') | |
POSTPROCESSOR = Registry('postprocessor') | |
UPSAMPLE_LAYERS = Registry('upsample layer', parent=MMCV_UPSAMPLE_LAYERS) | |
BACKBONES = Registry('models', parent=MMDET_BACKBONES) | |
LOSSES = BACKBONES | |
DETECTORS = BACKBONES | |
ROI_EXTRACTORS = BACKBONES | |
HEADS = BACKBONES | |
NECKS = BACKBONES | |
FUSERS = BACKBONES | |
RECOGNIZERS = BACKBONES | |
ACTIVATION_LAYERS = Registry('activation layer', parent=MMCV_ACTIVATION_LAYERS) | |
def build_recognizer(cfg, train_cfg=None, test_cfg=None): | |
"""Build recognizer.""" | |
return build_from_cfg(cfg, RECOGNIZERS, | |
dict(train_cfg=train_cfg, test_cfg=test_cfg)) | |
def build_convertor(cfg): | |
"""Build label convertor for scene text recognizer.""" | |
return build_from_cfg(cfg, CONVERTORS) | |
def build_encoder(cfg): | |
"""Build encoder for scene text recognizer.""" | |
return build_from_cfg(cfg, ENCODERS) | |
def build_decoder(cfg): | |
"""Build decoder for scene text recognizer.""" | |
return build_from_cfg(cfg, DECODERS) | |
def build_preprocessor(cfg): | |
"""Build preprocessor for scene text recognizer.""" | |
return build_from_cfg(cfg, PREPROCESSOR) | |
def build_postprocessor(cfg): | |
"""Build postprocessor for scene text detector.""" | |
return build_from_cfg(cfg, POSTPROCESSOR) | |
def build_roi_extractor(cfg): | |
"""Build roi extractor.""" | |
return ROI_EXTRACTORS.build(cfg) | |
def build_loss(cfg): | |
"""Build loss.""" | |
return LOSSES.build(cfg) | |
def build_backbone(cfg): | |
"""Build backbone.""" | |
return BACKBONES.build(cfg) | |
def build_head(cfg): | |
"""Build head.""" | |
return HEADS.build(cfg) | |
def build_neck(cfg): | |
"""Build neck.""" | |
return NECKS.build(cfg) | |
def build_fuser(cfg): | |
"""Build fuser.""" | |
return FUSERS.build(cfg) | |
def build_upsample_layer(cfg, *args, **kwargs): | |
"""Build upsample layer. | |
Args: | |
cfg (dict): The upsample layer config, which should contain: | |
- type (str): Layer type. | |
- scale_factor (int): Upsample ratio, which is not applicable to | |
deconv. | |
- layer args: Args needed to instantiate a upsample layer. | |
args (argument list): Arguments passed to the ``__init__`` | |
method of the corresponding conv layer. | |
kwargs (keyword arguments): Keyword arguments passed to the | |
``__init__`` method of the corresponding conv layer. | |
Returns: | |
nn.Module: Created upsample layer. | |
""" | |
if not isinstance(cfg, dict): | |
raise TypeError(f'cfg must be a dict, but got {type(cfg)}') | |
if 'type' not in cfg: | |
raise KeyError( | |
f'the cfg dict must contain the key "type", but got {cfg}') | |
cfg_ = cfg.copy() | |
layer_type = cfg_.pop('type') | |
if layer_type not in UPSAMPLE_LAYERS: | |
raise KeyError(f'Unrecognized upsample type {layer_type}') | |
else: | |
upsample = UPSAMPLE_LAYERS.get(layer_type) | |
if upsample is nn.Upsample: | |
cfg_['mode'] = layer_type | |
layer = upsample(*args, **kwargs, **cfg_) | |
return layer | |
def build_activation_layer(cfg): | |
"""Build activation layer. | |
Args: | |
cfg (dict): The activation layer config, which should contain: | |
- type (str): Layer type. | |
- layer args: Args needed to instantiate an activation layer. | |
Returns: | |
nn.Module: Created activation layer. | |
""" | |
return build_from_cfg(cfg, ACTIVATION_LAYERS) | |
def build_detector(cfg, train_cfg=None, test_cfg=None): | |
"""Build detector.""" | |
if train_cfg is not None or test_cfg is not None: | |
warnings.warn( | |
'train_cfg and test_cfg is deprecated, ' | |
'please specify them in model', UserWarning) | |
assert cfg.get('train_cfg') is None or train_cfg is None, \ | |
'train_cfg specified in both outer field and model field ' | |
assert cfg.get('test_cfg') is None or test_cfg is None, \ | |
'test_cfg specified in both outer field and model field ' | |
return DETECTORS.build( | |
cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg)) | |