Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
from mmcv.ops import RoIAlignRotated | |
from .utils import (euclidean_distance_matrix, feature_embedding, | |
normalize_adjacent_matrix) | |
class LocalGraphs: | |
"""Generate local graphs for GCN to classify the neighbors of a pivot for | |
DRRG: Deep Relational Reasoning Graph Network for Arbitrary Shape Text | |
Detection. | |
[https://arxiv.org/abs/2003.07493]. This code was partially adapted from | |
https://github.com/GXYM/DRRG licensed under the MIT license. | |
Args: | |
k_at_hops (tuple(int)): The number of i-hop neighbors, i = 1, 2. | |
num_adjacent_linkages (int): The number of linkages when constructing | |
adjacent matrix. | |
node_geo_feat_len (int): The length of embedded geometric feature | |
vector of a text component. | |
pooling_scale (float): The spatial scale of rotated RoI-Align. | |
pooling_output_size (tuple(int)): The output size of rotated RoI-Align. | |
local_graph_thr(float): The threshold for filtering out identical local | |
graphs. | |
""" | |
def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len, | |
pooling_scale, pooling_output_size, local_graph_thr): | |
assert len(k_at_hops) == 2 | |
assert all(isinstance(n, int) for n in k_at_hops) | |
assert isinstance(num_adjacent_linkages, int) | |
assert isinstance(node_geo_feat_len, int) | |
assert isinstance(pooling_scale, float) | |
assert all(isinstance(n, int) for n in pooling_output_size) | |
assert isinstance(local_graph_thr, float) | |
self.k_at_hops = k_at_hops | |
self.num_adjacent_linkages = num_adjacent_linkages | |
self.node_geo_feat_dim = node_geo_feat_len | |
self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale) | |
self.local_graph_thr = local_graph_thr | |
def generate_local_graphs(self, sorted_dist_inds, gt_comp_labels): | |
"""Generate local graphs for GCN to predict which instance a text | |
component belongs to. | |
Args: | |
sorted_dist_inds (ndarray): The complete graph node indices, which | |
is sorted according to the Euclidean distance. | |
gt_comp_labels(ndarray): The ground truth labels define the | |
instance to which the text components (nodes in graphs) belong. | |
Returns: | |
pivot_local_graphs(list[list[int]]): The list of local graph | |
neighbor indices of pivots. | |
pivot_knns(list[list[int]]): The list of k-nearest neighbor indices | |
of pivots. | |
""" | |
assert sorted_dist_inds.ndim == 2 | |
assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] == | |
gt_comp_labels.shape[0]) | |
knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1] | |
pivot_local_graphs = [] | |
pivot_knns = [] | |
for pivot_ind, knn in enumerate(knn_graph): | |
local_graph_neighbors = set(knn) | |
for neighbor_ind in knn: | |
local_graph_neighbors.update( | |
set(sorted_dist_inds[neighbor_ind, | |
1:self.k_at_hops[1] + 1])) | |
local_graph_neighbors.discard(pivot_ind) | |
pivot_local_graph = list(local_graph_neighbors) | |
pivot_local_graph.insert(0, pivot_ind) | |
pivot_knn = [pivot_ind] + list(knn) | |
if pivot_ind < 1: | |
pivot_local_graphs.append(pivot_local_graph) | |
pivot_knns.append(pivot_knn) | |
else: | |
add_flag = True | |
for graph_ind, added_knn in enumerate(pivot_knns): | |
added_pivot_ind = added_knn[0] | |
added_local_graph = pivot_local_graphs[graph_ind] | |
union = len( | |
set(pivot_local_graph[1:]).union( | |
set(added_local_graph[1:]))) | |
intersect = len( | |
set(pivot_local_graph[1:]).intersection( | |
set(added_local_graph[1:]))) | |
local_graph_iou = intersect / (union + 1e-8) | |
if (local_graph_iou > self.local_graph_thr | |
and pivot_ind in added_knn | |
and gt_comp_labels[added_pivot_ind] | |
== gt_comp_labels[pivot_ind] | |
and gt_comp_labels[pivot_ind] != 0): | |
add_flag = False | |
break | |
if add_flag: | |
pivot_local_graphs.append(pivot_local_graph) | |
pivot_knns.append(pivot_knn) | |
return pivot_local_graphs, pivot_knns | |
def generate_gcn_input(self, node_feat_batch, node_label_batch, | |
local_graph_batch, knn_batch, | |
sorted_dist_ind_batch): | |
"""Generate graph convolution network input data. | |
Args: | |
node_feat_batch (List[Tensor]): The batched graph node features. | |
node_label_batch (List[ndarray]): The batched text component | |
labels. | |
local_graph_batch (List[List[list[int]]]): The local graph node | |
indices of image batch. | |
knn_batch (List[List[list[int]]]): The knn graph node indices of | |
image batch. | |
sorted_dist_ind_batch (list[ndarray]): The node indices sorted | |
according to the Euclidean distance. | |
Returns: | |
local_graphs_node_feat (Tensor): The node features of graph. | |
adjacent_matrices (Tensor): The adjacent matrices of local graphs. | |
pivots_knn_inds (Tensor): The k-nearest neighbor indices in | |
local graph. | |
gt_linkage (Tensor): The surpervision signal of GCN for linkage | |
prediction. | |
""" | |
assert isinstance(node_feat_batch, list) | |
assert isinstance(node_label_batch, list) | |
assert isinstance(local_graph_batch, list) | |
assert isinstance(knn_batch, list) | |
assert isinstance(sorted_dist_ind_batch, list) | |
num_max_nodes = max([ | |
len(pivot_local_graph) for pivot_local_graphs in local_graph_batch | |
for pivot_local_graph in pivot_local_graphs | |
]) | |
local_graphs_node_feat = [] | |
adjacent_matrices = [] | |
pivots_knn_inds = [] | |
pivots_gt_linkage = [] | |
for batch_ind, sorted_dist_inds in enumerate(sorted_dist_ind_batch): | |
node_feats = node_feat_batch[batch_ind] | |
pivot_local_graphs = local_graph_batch[batch_ind] | |
pivot_knns = knn_batch[batch_ind] | |
node_labels = node_label_batch[batch_ind] | |
device = node_feats.device | |
for graph_ind, pivot_knn in enumerate(pivot_knns): | |
pivot_local_graph = pivot_local_graphs[graph_ind] | |
num_nodes = len(pivot_local_graph) | |
pivot_ind = pivot_local_graph[0] | |
node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)} | |
knn_inds = torch.tensor( | |
[node2ind_map[i] for i in pivot_knn[1:]]) | |
pivot_feats = node_feats[pivot_ind] | |
normalized_feats = node_feats[pivot_local_graph] - pivot_feats | |
adjacent_matrix = np.zeros((num_nodes, num_nodes), | |
dtype=np.float32) | |
for node in pivot_local_graph: | |
neighbors = sorted_dist_inds[node, | |
1:self.num_adjacent_linkages + | |
1] | |
for neighbor in neighbors: | |
if neighbor in pivot_local_graph: | |
adjacent_matrix[node2ind_map[node], | |
node2ind_map[neighbor]] = 1 | |
adjacent_matrix[node2ind_map[neighbor], | |
node2ind_map[node]] = 1 | |
adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix) | |
pad_adjacent_matrix = torch.zeros( | |
(num_max_nodes, num_max_nodes), | |
dtype=torch.float, | |
device=device) | |
pad_adjacent_matrix[:num_nodes, :num_nodes] = torch.from_numpy( | |
adjacent_matrix) | |
pad_normalized_feats = torch.cat([ | |
normalized_feats, | |
torch.zeros( | |
(num_max_nodes - num_nodes, normalized_feats.shape[1]), | |
dtype=torch.float, | |
device=device) | |
], | |
dim=0) | |
local_graph_labels = node_labels[pivot_local_graph] | |
knn_labels = local_graph_labels[knn_inds] | |
link_labels = ((node_labels[pivot_ind] == knn_labels) & | |
(node_labels[pivot_ind] > 0)).astype(np.int64) | |
link_labels = torch.from_numpy(link_labels) | |
local_graphs_node_feat.append(pad_normalized_feats) | |
adjacent_matrices.append(pad_adjacent_matrix) | |
pivots_knn_inds.append(knn_inds) | |
pivots_gt_linkage.append(link_labels) | |
local_graphs_node_feat = torch.stack(local_graphs_node_feat, 0) | |
adjacent_matrices = torch.stack(adjacent_matrices, 0) | |
pivots_knn_inds = torch.stack(pivots_knn_inds, 0) | |
pivots_gt_linkage = torch.stack(pivots_gt_linkage, 0) | |
return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds, | |
pivots_gt_linkage) | |
def __call__(self, feat_maps, comp_attribs): | |
"""Generate local graphs as GCN input. | |
Args: | |
feat_maps (Tensor): The feature maps to extract the content | |
features of text components. | |
comp_attribs (ndarray): The text component attributes. | |
Returns: | |
local_graphs_node_feat (Tensor): The node features of graph. | |
adjacent_matrices (Tensor): The adjacent matrices of local graphs. | |
pivots_knn_inds (Tensor): The k-nearest neighbor indices in local | |
graph. | |
gt_linkage (Tensor): The surpervision signal of GCN for linkage | |
prediction. | |
""" | |
assert isinstance(feat_maps, torch.Tensor) | |
assert comp_attribs.ndim == 3 | |
assert comp_attribs.shape[2] == 8 | |
sorted_dist_inds_batch = [] | |
local_graph_batch = [] | |
knn_batch = [] | |
node_feat_batch = [] | |
node_label_batch = [] | |
device = feat_maps.device | |
for batch_ind in range(comp_attribs.shape[0]): | |
num_comps = int(comp_attribs[batch_ind, 0, 0]) | |
comp_geo_attribs = comp_attribs[batch_ind, :num_comps, 1:7] | |
node_labels = comp_attribs[batch_ind, :num_comps, | |
7].astype(np.int32) | |
comp_centers = comp_geo_attribs[:, 0:2] | |
distance_matrix = euclidean_distance_matrix( | |
comp_centers, comp_centers) | |
batch_id = np.zeros( | |
(comp_geo_attribs.shape[0], 1), dtype=np.float32) * batch_ind | |
comp_geo_attribs[:, -2] = np.clip(comp_geo_attribs[:, -2], -1, 1) | |
angle = np.arccos(comp_geo_attribs[:, -2]) * np.sign( | |
comp_geo_attribs[:, -1]) | |
angle = angle.reshape((-1, 1)) | |
rotated_rois = np.hstack( | |
[batch_id, comp_geo_attribs[:, :-2], angle]) | |
rois = torch.from_numpy(rotated_rois).to(device) | |
content_feats = self.pooling(feat_maps[batch_ind].unsqueeze(0), | |
rois) | |
content_feats = content_feats.view(content_feats.shape[0], | |
-1).to(feat_maps.device) | |
geo_feats = feature_embedding(comp_geo_attribs, | |
self.node_geo_feat_dim) | |
geo_feats = torch.from_numpy(geo_feats).to(device) | |
node_feats = torch.cat([content_feats, geo_feats], dim=-1) | |
sorted_dist_inds = np.argsort(distance_matrix, axis=1) | |
pivot_local_graphs, pivot_knns = self.generate_local_graphs( | |
sorted_dist_inds, node_labels) | |
node_feat_batch.append(node_feats) | |
node_label_batch.append(node_labels) | |
local_graph_batch.append(pivot_local_graphs) | |
knn_batch.append(pivot_knns) | |
sorted_dist_inds_batch.append(sorted_dist_inds) | |
(node_feats, adjacent_matrices, knn_inds, gt_linkage) = \ | |
self.generate_gcn_input(node_feat_batch, | |
node_label_batch, | |
local_graph_batch, | |
knn_batch, | |
sorted_dist_inds_batch) | |
return node_feats, adjacent_matrices, knn_inds, gt_linkage | |