Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import mmocr.utils as utils | |
from mmocr.models.builder import DECODERS | |
from .base_decoder import BaseDecoder | |
class ParallelSARDecoder(BaseDecoder): | |
"""Implementation Parallel Decoder module in `SAR. | |
<https://arxiv.org/abs/1811.00751>`_. | |
Args: | |
num_classes (int): Output class number :math:`C`. | |
channels (list[int]): Network layer channels. | |
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. | |
dec_bi_rnn (bool): If True, use bidirectional RNN in decoder. | |
dec_do_rnn (float): Dropout of RNN layer in decoder. | |
dec_gru (bool): If True, use GRU, else LSTM in decoder. | |
d_model (int): Dim of channels from backbone :math:`D_i`. | |
d_enc (int): Dim of encoder RNN layer :math:`D_m`. | |
d_k (int): Dim of channels of attention module. | |
pred_dropout (float): Dropout probability of prediction layer. | |
max_seq_len (int): Maximum sequence length for decoding. | |
mask (bool): If True, mask padding in feature map. | |
start_idx (int): Index of start token. | |
padding_idx (int): Index of padding token. | |
pred_concat (bool): If True, concat glimpse feature from | |
attention with holistic feature and hidden state. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
Warning: | |
This decoder will not predict the final class which is assumed to be | |
`<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>` | |
is also ignored by loss as specified in | |
:obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`. | |
""" | |
def __init__(self, | |
num_classes=37, | |
enc_bi_rnn=False, | |
dec_bi_rnn=False, | |
dec_do_rnn=0.0, | |
dec_gru=False, | |
d_model=512, | |
d_enc=512, | |
d_k=64, | |
pred_dropout=0.0, | |
max_seq_len=40, | |
mask=True, | |
start_idx=0, | |
padding_idx=92, | |
pred_concat=False, | |
init_cfg=None, | |
**kwargs): | |
super().__init__(init_cfg=init_cfg) | |
self.num_classes = num_classes | |
self.enc_bi_rnn = enc_bi_rnn | |
self.d_k = d_k | |
self.start_idx = start_idx | |
self.max_seq_len = max_seq_len | |
self.mask = mask | |
self.pred_concat = pred_concat | |
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1) | |
decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1) | |
# 2D attention layer | |
self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k) | |
self.conv3x3_1 = nn.Conv2d( | |
d_model, d_k, kernel_size=3, stride=1, padding=1) | |
self.conv1x1_2 = nn.Linear(d_k, 1) | |
# Decoder RNN layer | |
kwargs = dict( | |
input_size=encoder_rnn_out_size, | |
hidden_size=encoder_rnn_out_size, | |
num_layers=2, | |
batch_first=True, | |
dropout=dec_do_rnn, | |
bidirectional=dec_bi_rnn) | |
if dec_gru: | |
self.rnn_decoder = nn.GRU(**kwargs) | |
else: | |
self.rnn_decoder = nn.LSTM(**kwargs) | |
# Decoder input embedding | |
self.embedding = nn.Embedding( | |
self.num_classes, encoder_rnn_out_size, padding_idx=padding_idx) | |
# Prediction layer | |
self.pred_dropout = nn.Dropout(pred_dropout) | |
pred_num_classes = num_classes - 1 # ignore padding_idx in prediction | |
if pred_concat: | |
fc_in_channel = decoder_rnn_out_size + d_model + \ | |
encoder_rnn_out_size | |
else: | |
fc_in_channel = d_model | |
self.prediction = nn.Linear(fc_in_channel, pred_num_classes) | |
def _2d_attention(self, | |
decoder_input, | |
feat, | |
holistic_feat, | |
valid_ratios=None): | |
y = self.rnn_decoder(decoder_input)[0] | |
# y: bsz * (seq_len + 1) * hidden_size | |
attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size | |
bsz, seq_len, attn_size = attn_query.size() | |
attn_query = attn_query.view(bsz, seq_len, attn_size, 1, 1) | |
attn_key = self.conv3x3_1(feat) | |
# bsz * attn_size * h * w | |
attn_key = attn_key.unsqueeze(1) | |
# bsz * 1 * attn_size * h * w | |
attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1)) | |
# bsz * (seq_len + 1) * attn_size * h * w | |
attn_weight = attn_weight.permute(0, 1, 3, 4, 2).contiguous() | |
# bsz * (seq_len + 1) * h * w * attn_size | |
attn_weight = self.conv1x1_2(attn_weight) | |
# bsz * (seq_len + 1) * h * w * 1 | |
bsz, T, h, w, c = attn_weight.size() | |
assert c == 1 | |
if valid_ratios is not None: | |
# cal mask of attention weight | |
attn_mask = torch.zeros_like(attn_weight) | |
for i, valid_ratio in enumerate(valid_ratios): | |
valid_width = min(w, math.ceil(w * valid_ratio)) | |
attn_mask[i, :, :, valid_width:, :] = 1 | |
attn_weight = attn_weight.masked_fill(attn_mask.bool(), | |
float('-inf')) | |
attn_weight = attn_weight.view(bsz, T, -1) | |
attn_weight = F.softmax(attn_weight, dim=-1) | |
attn_weight = attn_weight.view(bsz, T, h, w, | |
c).permute(0, 1, 4, 2, 3).contiguous() | |
attn_feat = torch.sum( | |
torch.mul(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False) | |
# bsz * (seq_len + 1) * C | |
# linear transformation | |
if self.pred_concat: | |
hf_c = holistic_feat.size(-1) | |
holistic_feat = holistic_feat.expand(bsz, seq_len, hf_c) | |
y = self.prediction(torch.cat((y, attn_feat, holistic_feat), 2)) | |
else: | |
y = self.prediction(attn_feat) | |
# bsz * (seq_len + 1) * num_classes | |
if self.train_mode: | |
y = self.pred_dropout(y) | |
return y | |
def forward_train(self, feat, out_enc, targets_dict, img_metas): | |
""" | |
Args: | |
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. | |
out_enc (Tensor): Encoder output of shape | |
:math:`(N, D_m, H, W)`. | |
targets_dict (dict): A dict with the key ``padded_targets``, a | |
tensor of shape :math:`(N, T)`. Each element is the index of a | |
character. | |
img_metas (dict): A dict that contains meta information of input | |
images. Preferably with the key ``valid_ratio``. | |
Returns: | |
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`. | |
""" | |
if img_metas is not None: | |
assert utils.is_type_list(img_metas, dict) | |
assert len(img_metas) == feat.size(0) | |
valid_ratios = None | |
if img_metas is not None: | |
valid_ratios = [ | |
img_meta.get('valid_ratio', 1.0) for img_meta in img_metas | |
] if self.mask else None | |
targets = targets_dict['padded_targets'].to(feat.device) | |
tgt_embedding = self.embedding(targets) | |
# bsz * seq_len * emb_dim | |
out_enc = out_enc.unsqueeze(1) | |
# bsz * 1 * emb_dim | |
in_dec = torch.cat((out_enc, tgt_embedding), dim=1) | |
# bsz * (seq_len + 1) * C | |
out_dec = self._2d_attention( | |
in_dec, feat, out_enc, valid_ratios=valid_ratios) | |
# bsz * (seq_len + 1) * num_classes | |
return out_dec[:, 1:, :] # bsz * seq_len * num_classes | |
def forward_test(self, feat, out_enc, img_metas): | |
""" | |
Args: | |
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. | |
out_enc (Tensor): Encoder output of shape | |
:math:`(N, D_m, H, W)`. | |
img_metas (dict): A dict that contains meta information of input | |
images. Preferably with the key ``valid_ratio``. | |
Returns: | |
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`. | |
""" | |
if img_metas is not None: | |
assert utils.is_type_list(img_metas, dict) | |
assert len(img_metas) == feat.size(0) | |
valid_ratios = None | |
if img_metas is not None: | |
valid_ratios = [ | |
img_meta.get('valid_ratio', 1.0) for img_meta in img_metas | |
] if self.mask else None | |
seq_len = self.max_seq_len | |
bsz = feat.size(0) | |
start_token = torch.full((bsz, ), | |
self.start_idx, | |
device=feat.device, | |
dtype=torch.long) | |
# bsz | |
start_token = self.embedding(start_token) | |
# bsz * emb_dim | |
start_token = start_token.unsqueeze(1).expand(-1, seq_len, -1) | |
# bsz * seq_len * emb_dim | |
out_enc = out_enc.unsqueeze(1) | |
# bsz * 1 * emb_dim | |
decoder_input = torch.cat((out_enc, start_token), dim=1) | |
# bsz * (seq_len + 1) * emb_dim | |
outputs = [] | |
for i in range(1, seq_len + 1): | |
decoder_output = self._2d_attention( | |
decoder_input, feat, out_enc, valid_ratios=valid_ratios) | |
char_output = decoder_output[:, i, :] # bsz * num_classes | |
char_output = F.softmax(char_output, -1) | |
outputs.append(char_output) | |
_, max_idx = torch.max(char_output, dim=1, keepdim=False) | |
char_embedding = self.embedding(max_idx) # bsz * emb_dim | |
if i < seq_len: | |
decoder_input[:, i + 1, :] = char_embedding | |
outputs = torch.stack(outputs, 1) # bsz * seq_len * num_classes | |
return outputs | |
class SequentialSARDecoder(BaseDecoder): | |
"""Implementation Sequential Decoder module in `SAR. | |
<https://arxiv.org/abs/1811.00751>`_. | |
Args: | |
num_classes (int): Output class number :math:`C`. | |
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. | |
dec_bi_rnn (bool): If True, use bidirectional RNN in decoder. | |
dec_do_rnn (float): Dropout of RNN layer in decoder. | |
dec_gru (bool): If True, use GRU, else LSTM in decoder. | |
d_k (int): Dim of conv layers in attention module. | |
d_model (int): Dim of channels from backbone :math:`D_i`. | |
d_enc (int): Dim of encoder RNN layer :math:`D_m`. | |
pred_dropout (float): Dropout probability of prediction layer. | |
max_seq_len (int): Maximum sequence length during decoding. | |
mask (bool): If True, mask padding in feature map. | |
start_idx (int): Index of start token. | |
padding_idx (int): Index of padding token. | |
pred_concat (bool): If True, concat glimpse feature from | |
attention with holistic feature and hidden state. | |
""" | |
def __init__(self, | |
num_classes=37, | |
enc_bi_rnn=False, | |
dec_bi_rnn=False, | |
dec_gru=False, | |
d_k=64, | |
d_model=512, | |
d_enc=512, | |
pred_dropout=0.0, | |
mask=True, | |
max_seq_len=40, | |
start_idx=0, | |
padding_idx=92, | |
pred_concat=False, | |
init_cfg=None, | |
**kwargs): | |
super().__init__(init_cfg=init_cfg) | |
self.num_classes = num_classes | |
self.enc_bi_rnn = enc_bi_rnn | |
self.d_k = d_k | |
self.start_idx = start_idx | |
self.dec_gru = dec_gru | |
self.max_seq_len = max_seq_len | |
self.mask = mask | |
self.pred_concat = pred_concat | |
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1) | |
decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1) | |
# 2D attention layer | |
self.conv1x1_1 = nn.Conv2d( | |
decoder_rnn_out_size, d_k, kernel_size=1, stride=1) | |
self.conv3x3_1 = nn.Conv2d( | |
d_model, d_k, kernel_size=3, stride=1, padding=1) | |
self.conv1x1_2 = nn.Conv2d(d_k, 1, kernel_size=1, stride=1) | |
# Decoder rnn layer | |
if dec_gru: | |
self.rnn_decoder_layer1 = nn.GRUCell(encoder_rnn_out_size, | |
encoder_rnn_out_size) | |
self.rnn_decoder_layer2 = nn.GRUCell(encoder_rnn_out_size, | |
encoder_rnn_out_size) | |
else: | |
self.rnn_decoder_layer1 = nn.LSTMCell(encoder_rnn_out_size, | |
encoder_rnn_out_size) | |
self.rnn_decoder_layer2 = nn.LSTMCell(encoder_rnn_out_size, | |
encoder_rnn_out_size) | |
# Decoder input embedding | |
self.embedding = nn.Embedding( | |
self.num_classes, encoder_rnn_out_size, padding_idx=padding_idx) | |
# Prediction layer | |
self.pred_dropout = nn.Dropout(pred_dropout) | |
pred_num_class = num_classes - 1 # ignore padding index | |
if pred_concat: | |
fc_in_channel = decoder_rnn_out_size + d_model + d_enc | |
else: | |
fc_in_channel = d_model | |
self.prediction = nn.Linear(fc_in_channel, pred_num_class) | |
def _2d_attention(self, | |
y_prev, | |
feat, | |
holistic_feat, | |
hx1, | |
cx1, | |
hx2, | |
cx2, | |
valid_ratios=None): | |
_, _, h_feat, w_feat = feat.size() | |
if self.dec_gru: | |
hx1 = cx1 = self.rnn_decoder_layer1(y_prev, hx1) | |
hx2 = cx2 = self.rnn_decoder_layer2(hx1, hx2) | |
else: | |
hx1, cx1 = self.rnn_decoder_layer1(y_prev, (hx1, cx1)) | |
hx2, cx2 = self.rnn_decoder_layer2(hx1, (hx2, cx2)) | |
tile_hx2 = hx2.view(hx2.size(0), hx2.size(1), 1, 1) | |
attn_query = self.conv1x1_1(tile_hx2) # bsz * attn_size * 1 * 1 | |
attn_query = attn_query.expand(-1, -1, h_feat, w_feat) | |
attn_key = self.conv3x3_1(feat) | |
attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1)) | |
attn_weight = self.conv1x1_2(attn_weight) | |
bsz, c, h, w = attn_weight.size() | |
assert c == 1 | |
if valid_ratios is not None: | |
# cal mask of attention weight | |
attn_mask = torch.zeros_like(attn_weight) | |
for i, valid_ratio in enumerate(valid_ratios): | |
valid_width = min(w, math.ceil(w * valid_ratio)) | |
attn_mask[i, :, :, valid_width:] = 1 | |
attn_weight = attn_weight.masked_fill(attn_mask.bool(), | |
float('-inf')) | |
attn_weight = F.softmax(attn_weight.view(bsz, -1), dim=-1) | |
attn_weight = attn_weight.view(bsz, c, h, w) | |
attn_feat = torch.sum( | |
torch.mul(feat, attn_weight), (2, 3), keepdim=False) # n * c | |
# linear transformation | |
if self.pred_concat: | |
y = self.prediction(torch.cat((hx2, attn_feat, holistic_feat), 1)) | |
else: | |
y = self.prediction(attn_feat) | |
return y, hx1, hx1, hx2, hx2 | |
def forward_train(self, feat, out_enc, targets_dict, img_metas=None): | |
""" | |
Args: | |
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. | |
out_enc (Tensor): Encoder output of shape | |
:math:`(N, D_m, H, W)`. | |
targets_dict (dict): A dict with the key ``padded_targets``, a | |
tensor of shape :math:`(N, T)`. Each element is the index of a | |
character. | |
img_metas (dict): A dict that contains meta information of input | |
images. Preferably with the key ``valid_ratio``. | |
Returns: | |
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`. | |
""" | |
if img_metas is not None: | |
assert utils.is_type_list(img_metas, dict) | |
assert len(img_metas) == feat.size(0) | |
valid_ratios = None | |
if img_metas is not None: | |
valid_ratios = [ | |
img_meta.get('valid_ratio', 1.0) for img_meta in img_metas | |
] if self.mask else None | |
if self.train_mode: | |
targets = targets_dict['padded_targets'].to(feat.device) | |
tgt_embedding = self.embedding(targets) | |
outputs = [] | |
start_token = torch.full((feat.size(0), ), | |
self.start_idx, | |
device=feat.device, | |
dtype=torch.long) | |
start_token = self.embedding(start_token) | |
for i in range(-1, self.max_seq_len): | |
if i == -1: | |
if self.dec_gru: | |
hx1 = cx1 = self.rnn_decoder_layer1(out_enc) | |
hx2 = cx2 = self.rnn_decoder_layer2(hx1) | |
else: | |
hx1, cx1 = self.rnn_decoder_layer1(out_enc) | |
hx2, cx2 = self.rnn_decoder_layer2(hx1) | |
if not self.train_mode: | |
y_prev = start_token | |
else: | |
if self.train_mode: | |
y_prev = tgt_embedding[:, i, :] | |
y, hx1, cx1, hx2, cx2 = self._2d_attention( | |
y_prev, | |
feat, | |
out_enc, | |
hx1, | |
cx1, | |
hx2, | |
cx2, | |
valid_ratios=valid_ratios) | |
if self.train_mode: | |
y = self.pred_dropout(y) | |
else: | |
y = F.softmax(y, -1) | |
_, max_idx = torch.max(y, dim=1, keepdim=False) | |
char_embedding = self.embedding(max_idx) | |
y_prev = char_embedding | |
outputs.append(y) | |
outputs = torch.stack(outputs, 1) | |
return outputs | |
def forward_test(self, feat, out_enc, img_metas): | |
""" | |
Args: | |
feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. | |
out_enc (Tensor): Encoder output of shape | |
:math:`(N, D_m, H, W)`. | |
img_metas (dict): A dict that contains meta information of input | |
images. Preferably with the key ``valid_ratio``. | |
Returns: | |
Tensor: A raw logit tensor of shape :math:`(N, T, C-1)`. | |
""" | |
if img_metas is not None: | |
assert utils.is_type_list(img_metas, dict) | |
assert len(img_metas) == feat.size(0) | |
return self.forward_train(feat, out_enc, None, img_metas) | |