MMOCR / mmocr /datasets /pipelines /kie_transforms.py
tomofi's picture
Add application file
2366e36
raw
history blame
3.37 kB
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv import rescale_size
from mmcv.parallel import DataContainer as DC
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines.formating import DefaultFormatBundle, to_tensor
@PIPELINES.register_module()
class ResizeNoImg:
"""Image resizing without img.
Used for KIE.
"""
def __init__(self, img_scale, keep_ratio=True):
self.img_scale = img_scale
self.keep_ratio = keep_ratio
def __call__(self, results):
w, h = results['img_info']['width'], results['img_info']['height']
if self.keep_ratio:
(new_w, new_h) = rescale_size((w, h),
self.img_scale,
return_scale=False)
w_scale = new_w / w
h_scale = new_h / h
else:
(new_w, new_h) = self.img_scale
w_scale = new_w / w
h_scale = new_h / h
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
dtype=np.float32)
results['img_shape'] = (new_h, new_w, 1)
results['scale_factor'] = scale_factor
results['keep_ratio'] = True
return results
@PIPELINES.register_module()
class KIEFormatBundle(DefaultFormatBundle):
"""Key information extraction formatting bundle.
Based on the DefaultFormatBundle, itt simplifies the pipeline of formatting
common fields, including "img", "proposals", "gt_bboxes", "gt_labels",
"gt_masks", "gt_semantic_seg", "relations" and "texts".
These fields are formatted as follows.
- img: (1) transpose, (2) to tensor, (3) to DataContainer (stack=True)
- proposals: (1) to tensor, (2) to DataContainer
- gt_bboxes: (1) to tensor, (2) to DataContainer
- gt_bboxes_ignore: (1) to tensor, (2) to DataContainer
- gt_labels: (1) to tensor, (2) to DataContainer
- gt_masks: (1) to tensor, (2) to DataContainer (cpu_only=True)
- gt_semantic_seg: (1) unsqueeze dim-0 (2) to tensor,
(3) to DataContainer (stack=True)
- relations: (1) scale, (2) to tensor, (3) to DataContainer
- texts: (1) to tensor, (2) to DataContainer
"""
def __call__(self, results):
"""Call function to transform and format common fields in results.
Args:
results (dict): Result dict contains the data to convert.
Returns:
dict: The result dict contains the data that is formatted with
default bundle.
"""
super().__call__(results)
if 'ann_info' in results:
for key in ['relations', 'texts']:
value = results['ann_info'][key]
if key == 'relations' and 'scale_factor' in results:
scale_factor = results['scale_factor']
if isinstance(scale_factor, float):
sx = sy = scale_factor
else:
sx, sy = results['scale_factor'][:2]
r = sx / sy
factor = np.array([sx, sy, r, 1, r]).astype(np.float32)
value = value * factor[None, None]
results[key] = DC(to_tensor(value))
return results
def __repr__(self):
return self.__class__.__name__