Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import cv2 | |
import numpy as np | |
from lanms import merge_quadrangle_n9 as la_nms | |
from mmdet.core import BitmapMasks | |
from mmdet.datasets.builder import PIPELINES | |
from numpy.linalg import norm | |
import mmocr.utils.check_argument as check_argument | |
from .textsnake_targets import TextSnakeTargets | |
class DRRGTargets(TextSnakeTargets): | |
"""Generate the ground truth targets of DRRG: Deep Relational Reasoning | |
Graph Network for Arbitrary Shape Text Detection. | |
[https://arxiv.org/abs/2003.07493]. This code was partially adapted from | |
https://github.com/GXYM/DRRG licensed under the MIT license. | |
Args: | |
orientation_thr (float): The threshold for distinguishing between | |
head edge and tail edge among the horizontal and vertical edges | |
of a quadrangle. | |
resample_step (float): The step size for resampling the text center | |
line. | |
num_min_comps (int): The minimum number of text components, which | |
should be larger than k_hop1 mentioned in paper. | |
num_max_comps (int): The maximum number of text components. | |
min_width (float): The minimum width of text components. | |
max_width (float): The maximum width of text components. | |
center_region_shrink_ratio (float): The shrink ratio of text center | |
regions. | |
comp_shrink_ratio (float): The shrink ratio of text components. | |
comp_w_h_ratio (float): The width to height ratio of text components. | |
min_rand_half_height(float): The minimum half-height of random text | |
components. | |
max_rand_half_height (float): The maximum half-height of random | |
text components. | |
jitter_level (float): The jitter level of text component geometric | |
features. | |
""" | |
def __init__(self, | |
orientation_thr=2.0, | |
resample_step=8.0, | |
num_min_comps=9, | |
num_max_comps=600, | |
min_width=8.0, | |
max_width=24.0, | |
center_region_shrink_ratio=0.3, | |
comp_shrink_ratio=1.0, | |
comp_w_h_ratio=0.3, | |
text_comp_nms_thr=0.25, | |
min_rand_half_height=8.0, | |
max_rand_half_height=24.0, | |
jitter_level=0.2): | |
super().__init__() | |
self.orientation_thr = orientation_thr | |
self.resample_step = resample_step | |
self.num_max_comps = num_max_comps | |
self.num_min_comps = num_min_comps | |
self.min_width = min_width | |
self.max_width = max_width | |
self.center_region_shrink_ratio = center_region_shrink_ratio | |
self.comp_shrink_ratio = comp_shrink_ratio | |
self.comp_w_h_ratio = comp_w_h_ratio | |
self.text_comp_nms_thr = text_comp_nms_thr | |
self.min_rand_half_height = min_rand_half_height | |
self.max_rand_half_height = max_rand_half_height | |
self.jitter_level = jitter_level | |
def dist_point2line(self, point, line): | |
assert isinstance(line, tuple) | |
point1, point2 = line | |
d = abs(np.cross(point2 - point1, point - point1)) / ( | |
norm(point2 - point1) + 1e-8) | |
return d | |
def draw_center_region_maps(self, top_line, bot_line, center_line, | |
center_region_mask, top_height_map, | |
bot_height_map, sin_map, cos_map, | |
region_shrink_ratio): | |
"""Draw attributes of text components on text center regions. | |
Args: | |
top_line (ndarray): The points composing the top side lines of text | |
polygons. | |
bot_line (ndarray): The points composing bottom side lines of text | |
polygons. | |
center_line (ndarray): The points composing the center lines of | |
text instances. | |
center_region_mask (ndarray): The text center region mask. | |
top_height_map (ndarray): The map on which the distance from points | |
to top side lines will be drawn for each pixel in text center | |
regions. | |
bot_height_map (ndarray): The map on which the distance from points | |
to bottom side lines will be drawn for each pixel in text | |
center regions. | |
sin_map (ndarray): The map of vector_sin(top_point - bot_point) | |
that will be drawn on text center regions. | |
cos_map (ndarray): The map of vector_cos(top_point - bot_point) | |
will be drawn on text center regions. | |
region_shrink_ratio (float): The shrink ratio of text center | |
regions. | |
""" | |
assert top_line.shape == bot_line.shape == center_line.shape | |
assert (center_region_mask.shape == top_height_map.shape == | |
bot_height_map.shape == sin_map.shape == cos_map.shape) | |
assert isinstance(region_shrink_ratio, float) | |
h, w = center_region_mask.shape | |
for i in range(0, len(center_line) - 1): | |
top_mid_point = (top_line[i] + top_line[i + 1]) / 2 | |
bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2 | |
sin_theta = self.vector_sin(top_mid_point - bot_mid_point) | |
cos_theta = self.vector_cos(top_mid_point - bot_mid_point) | |
tl = center_line[i] + (top_line[i] - | |
center_line[i]) * region_shrink_ratio | |
tr = center_line[i + 1] + ( | |
top_line[i + 1] - center_line[i + 1]) * region_shrink_ratio | |
br = center_line[i + 1] + ( | |
bot_line[i + 1] - center_line[i + 1]) * region_shrink_ratio | |
bl = center_line[i] + (bot_line[i] - | |
center_line[i]) * region_shrink_ratio | |
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32) | |
cv2.fillPoly(center_region_mask, [current_center_box], color=1) | |
cv2.fillPoly(sin_map, [current_center_box], color=sin_theta) | |
cv2.fillPoly(cos_map, [current_center_box], color=cos_theta) | |
current_center_box[:, 0] = np.clip(current_center_box[:, 0], 0, | |
w - 1) | |
current_center_box[:, 1] = np.clip(current_center_box[:, 1], 0, | |
h - 1) | |
min_coord = np.min(current_center_box, axis=0).astype(np.int32) | |
max_coord = np.max(current_center_box, axis=0).astype(np.int32) | |
current_center_box = current_center_box - min_coord | |
box_sz = (max_coord - min_coord + 1) | |
center_box_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8) | |
cv2.fillPoly(center_box_mask, [current_center_box], color=1) | |
inds = np.argwhere(center_box_mask > 0) | |
inds = inds + (min_coord[1], min_coord[0]) | |
inds_xy = np.fliplr(inds) | |
top_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line( | |
inds_xy, (top_line[i], top_line[i + 1])) | |
bot_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line( | |
inds_xy, (bot_line[i], bot_line[i + 1])) | |
def generate_center_mask_attrib_maps(self, img_size, text_polys): | |
"""Generate text center region masks and geometric attribute maps. | |
Args: | |
img_size (tuple): The image size (height, width). | |
text_polys (list[list[ndarray]]): The list of text polygons. | |
Returns: | |
center_lines (list): The list of text center lines. | |
center_region_mask (ndarray): The text center region mask. | |
top_height_map (ndarray): The map on which the distance from points | |
to top side lines will be drawn for each pixel in text center | |
regions. | |
bot_height_map (ndarray): The map on which the distance from points | |
to bottom side lines will be drawn for each pixel in text | |
center regions. | |
sin_map (ndarray): The sin(theta) map where theta is the angle | |
between vector (top point - bottom point) and vector (1, 0). | |
cos_map (ndarray): The cos(theta) map where theta is the angle | |
between vector (top point - bottom point) and vector (1, 0). | |
""" | |
assert isinstance(img_size, tuple) | |
assert check_argument.is_2dlist(text_polys) | |
h, w = img_size | |
center_lines = [] | |
center_region_mask = np.zeros((h, w), np.uint8) | |
top_height_map = np.zeros((h, w), dtype=np.float32) | |
bot_height_map = np.zeros((h, w), dtype=np.float32) | |
sin_map = np.zeros((h, w), dtype=np.float32) | |
cos_map = np.zeros((h, w), dtype=np.float32) | |
for poly in text_polys: | |
assert len(poly) == 1 | |
polygon_points = poly[0].reshape(-1, 2) | |
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points) | |
resampled_top_line, resampled_bot_line = self.resample_sidelines( | |
top_line, bot_line, self.resample_step) | |
resampled_bot_line = resampled_bot_line[::-1] | |
center_line = (resampled_top_line + resampled_bot_line) / 2 | |
if self.vector_slope(center_line[-1] - center_line[0]) > 2: | |
if (center_line[-1] - center_line[0])[1] < 0: | |
center_line = center_line[::-1] | |
resampled_top_line = resampled_top_line[::-1] | |
resampled_bot_line = resampled_bot_line[::-1] | |
else: | |
if (center_line[-1] - center_line[0])[0] < 0: | |
center_line = center_line[::-1] | |
resampled_top_line = resampled_top_line[::-1] | |
resampled_bot_line = resampled_bot_line[::-1] | |
line_head_shrink_len = np.clip( | |
(norm(top_line[0] - bot_line[0]) * self.comp_w_h_ratio), | |
self.min_width, self.max_width) / 2 | |
line_tail_shrink_len = np.clip( | |
(norm(top_line[-1] - bot_line[-1]) * self.comp_w_h_ratio), | |
self.min_width, self.max_width) / 2 | |
num_head_shrink = int(line_head_shrink_len // self.resample_step) | |
num_tail_shrink = int(line_tail_shrink_len // self.resample_step) | |
if len(center_line) > num_head_shrink + num_tail_shrink + 2: | |
center_line = center_line[num_head_shrink:len(center_line) - | |
num_tail_shrink] | |
resampled_top_line = resampled_top_line[ | |
num_head_shrink:len(resampled_top_line) - num_tail_shrink] | |
resampled_bot_line = resampled_bot_line[ | |
num_head_shrink:len(resampled_bot_line) - num_tail_shrink] | |
center_lines.append(center_line.astype(np.int32)) | |
self.draw_center_region_maps(resampled_top_line, | |
resampled_bot_line, center_line, | |
center_region_mask, top_height_map, | |
bot_height_map, sin_map, cos_map, | |
self.center_region_shrink_ratio) | |
return (center_lines, center_region_mask, top_height_map, | |
bot_height_map, sin_map, cos_map) | |
def generate_rand_comp_attribs(self, num_rand_comps, center_sample_mask): | |
"""Generate random text components and their attributes to ensure the | |
the number of text components in an image is larger than k_hop1, which | |
is the number of one hop neighbors in KNN graph. | |
Args: | |
num_rand_comps (int): The number of random text components. | |
center_sample_mask (ndarray): The region mask for sampling text | |
component centers . | |
Returns: | |
rand_comp_attribs (ndarray): The random text component attributes | |
(x, y, h, w, cos, sin, comp_label=0). | |
""" | |
assert isinstance(num_rand_comps, int) | |
assert num_rand_comps > 0 | |
assert center_sample_mask.ndim == 2 | |
h, w = center_sample_mask.shape | |
max_rand_half_height = self.max_rand_half_height | |
min_rand_half_height = self.min_rand_half_height | |
max_rand_height = max_rand_half_height * 2 | |
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio, | |
self.min_width, self.max_width) | |
margin = int( | |
np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1 | |
if 2 * margin + 1 > min(h, w): | |
assert min(h, w) > (np.sqrt(2) * (self.min_width + 1)) | |
max_rand_half_height = max(min(h, w) / 4, self.min_width / 2 + 1) | |
min_rand_half_height = max(max_rand_half_height / 4, | |
self.min_width / 2) | |
max_rand_height = max_rand_half_height * 2 | |
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio, | |
self.min_width, self.max_width) | |
margin = int( | |
np.sqrt((max_rand_height / 2)**2 + | |
(max_rand_width / 2)**2)) + 1 | |
inner_center_sample_mask = np.zeros_like(center_sample_mask) | |
inner_center_sample_mask[margin:h - margin, margin:w - margin] = \ | |
center_sample_mask[margin:h - margin, margin:w - margin] | |
kernel_size = int(np.clip(max_rand_half_height, 7, 21)) | |
inner_center_sample_mask = cv2.erode( | |
inner_center_sample_mask, | |
np.ones((kernel_size, kernel_size), np.uint8)) | |
center_candidates = np.argwhere(inner_center_sample_mask > 0) | |
num_center_candidates = len(center_candidates) | |
sample_inds = np.random.choice(num_center_candidates, num_rand_comps) | |
rand_centers = center_candidates[sample_inds] | |
rand_top_height = np.random.randint( | |
min_rand_half_height, | |
max_rand_half_height, | |
size=(len(rand_centers), 1)) | |
rand_bot_height = np.random.randint( | |
min_rand_half_height, | |
max_rand_half_height, | |
size=(len(rand_centers), 1)) | |
rand_cos = 2 * np.random.random(size=(len(rand_centers), 1)) - 1 | |
rand_sin = 2 * np.random.random(size=(len(rand_centers), 1)) - 1 | |
scale = np.sqrt(1.0 / (rand_cos**2 + rand_sin**2 + 1e-8)) | |
rand_cos = rand_cos * scale | |
rand_sin = rand_sin * scale | |
height = (rand_top_height + rand_bot_height) | |
width = np.clip(height * self.comp_w_h_ratio, self.min_width, | |
self.max_width) | |
rand_comp_attribs = np.hstack([ | |
rand_centers[:, ::-1], height, width, rand_cos, rand_sin, | |
np.zeros_like(rand_sin) | |
]).astype(np.float32) | |
return rand_comp_attribs | |
def jitter_comp_attribs(self, comp_attribs, jitter_level): | |
"""Jitter text components attributes. | |
Args: | |
comp_attribs (ndarray): The text component attributes. | |
jitter_level (float): The jitter level of text components | |
attributes. | |
Returns: | |
jittered_comp_attribs (ndarray): The jittered text component | |
attributes (x, y, h, w, cos, sin, comp_label). | |
""" | |
assert comp_attribs.shape[1] == 7 | |
assert comp_attribs.shape[0] > 0 | |
assert isinstance(jitter_level, float) | |
x = comp_attribs[:, 0].reshape((-1, 1)) | |
y = comp_attribs[:, 1].reshape((-1, 1)) | |
h = comp_attribs[:, 2].reshape((-1, 1)) | |
w = comp_attribs[:, 3].reshape((-1, 1)) | |
cos = comp_attribs[:, 4].reshape((-1, 1)) | |
sin = comp_attribs[:, 5].reshape((-1, 1)) | |
comp_labels = comp_attribs[:, 6].reshape((-1, 1)) | |
x += (np.random.random(size=(len(comp_attribs), 1)) - | |
0.5) * (h * np.abs(cos) + w * np.abs(sin)) * jitter_level | |
y += (np.random.random(size=(len(comp_attribs), 1)) - | |
0.5) * (h * np.abs(sin) + w * np.abs(cos)) * jitter_level | |
h += (np.random.random(size=(len(comp_attribs), 1)) - | |
0.5) * h * jitter_level | |
w += (np.random.random(size=(len(comp_attribs), 1)) - | |
0.5) * w * jitter_level | |
cos += (np.random.random(size=(len(comp_attribs), 1)) - | |
0.5) * 2 * jitter_level | |
sin += (np.random.random(size=(len(comp_attribs), 1)) - | |
0.5) * 2 * jitter_level | |
scale = np.sqrt(1.0 / (cos**2 + sin**2 + 1e-8)) | |
cos = cos * scale | |
sin = sin * scale | |
jittered_comp_attribs = np.hstack([x, y, h, w, cos, sin, comp_labels]) | |
return jittered_comp_attribs | |
def generate_comp_attribs(self, center_lines, text_mask, | |
center_region_mask, top_height_map, | |
bot_height_map, sin_map, cos_map): | |
"""Generate text component attributes. | |
Args: | |
center_lines (list[ndarray]): The list of text center lines . | |
text_mask (ndarray): The text region mask. | |
center_region_mask (ndarray): The text center region mask. | |
top_height_map (ndarray): The map on which the distance from points | |
to top side lines will be drawn for each pixel in text center | |
regions. | |
bot_height_map (ndarray): The map on which the distance from points | |
to bottom side lines will be drawn for each pixel in text | |
center regions. | |
sin_map (ndarray): The sin(theta) map where theta is the angle | |
between vector (top point - bottom point) and vector (1, 0). | |
cos_map (ndarray): The cos(theta) map where theta is the angle | |
between vector (top point - bottom point) and vector (1, 0). | |
Returns: | |
pad_comp_attribs (ndarray): The padded text component attributes | |
of a fixed size. | |
""" | |
assert isinstance(center_lines, list) | |
assert (text_mask.shape == center_region_mask.shape == | |
top_height_map.shape == bot_height_map.shape == sin_map.shape | |
== cos_map.shape) | |
center_lines_mask = np.zeros_like(center_region_mask) | |
cv2.polylines(center_lines_mask, center_lines, 0, 1, 1) | |
center_lines_mask = center_lines_mask * center_region_mask | |
comp_centers = np.argwhere(center_lines_mask > 0) | |
y = comp_centers[:, 0] | |
x = comp_centers[:, 1] | |
top_height = top_height_map[y, x].reshape( | |
(-1, 1)) * self.comp_shrink_ratio | |
bot_height = bot_height_map[y, x].reshape( | |
(-1, 1)) * self.comp_shrink_ratio | |
sin = sin_map[y, x].reshape((-1, 1)) | |
cos = cos_map[y, x].reshape((-1, 1)) | |
top_mid_points = comp_centers + np.hstack( | |
[top_height * sin, top_height * cos]) | |
bot_mid_points = comp_centers - np.hstack( | |
[bot_height * sin, bot_height * cos]) | |
width = (top_height + bot_height) * self.comp_w_h_ratio | |
width = np.clip(width, self.min_width, self.max_width) | |
r = width / 2 | |
tl = top_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos]) | |
tr = top_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos]) | |
br = bot_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos]) | |
bl = bot_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos]) | |
text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32) | |
score = np.ones((text_comps.shape[0], 1), dtype=np.float32) | |
text_comps = np.hstack([text_comps, score]) | |
text_comps = la_nms(text_comps, self.text_comp_nms_thr) | |
if text_comps.shape[0] >= 1: | |
img_h, img_w = center_region_mask.shape | |
text_comps[:, 0:8:2] = np.clip(text_comps[:, 0:8:2], 0, img_w - 1) | |
text_comps[:, 1:8:2] = np.clip(text_comps[:, 1:8:2], 0, img_h - 1) | |
comp_centers = np.mean( | |
text_comps[:, 0:8].reshape((-1, 4, 2)), | |
axis=1).astype(np.int32) | |
x = comp_centers[:, 0] | |
y = comp_centers[:, 1] | |
height = (top_height_map[y, x] + bot_height_map[y, x]).reshape( | |
(-1, 1)) | |
width = np.clip(height * self.comp_w_h_ratio, self.min_width, | |
self.max_width) | |
cos = cos_map[y, x].reshape((-1, 1)) | |
sin = sin_map[y, x].reshape((-1, 1)) | |
_, comp_label_mask = cv2.connectedComponents( | |
center_region_mask, connectivity=8) | |
comp_labels = comp_label_mask[y, x].reshape( | |
(-1, 1)).astype(np.float32) | |
x = x.reshape((-1, 1)).astype(np.float32) | |
y = y.reshape((-1, 1)).astype(np.float32) | |
comp_attribs = np.hstack( | |
[x, y, height, width, cos, sin, comp_labels]) | |
comp_attribs = self.jitter_comp_attribs(comp_attribs, | |
self.jitter_level) | |
if comp_attribs.shape[0] < self.num_min_comps: | |
num_rand_comps = self.num_min_comps - comp_attribs.shape[0] | |
rand_comp_attribs = self.generate_rand_comp_attribs( | |
num_rand_comps, 1 - text_mask) | |
comp_attribs = np.vstack([comp_attribs, rand_comp_attribs]) | |
else: | |
comp_attribs = self.generate_rand_comp_attribs( | |
self.num_min_comps, 1 - text_mask) | |
num_comps = ( | |
np.ones((comp_attribs.shape[0], 1), dtype=np.float32) * | |
comp_attribs.shape[0]) | |
comp_attribs = np.hstack([num_comps, comp_attribs]) | |
if comp_attribs.shape[0] > self.num_max_comps: | |
comp_attribs = comp_attribs[:self.num_max_comps, :] | |
comp_attribs[:, 0] = self.num_max_comps | |
pad_comp_attribs = np.zeros( | |
(self.num_max_comps, comp_attribs.shape[1]), dtype=np.float32) | |
pad_comp_attribs[:comp_attribs.shape[0], :] = comp_attribs | |
return pad_comp_attribs | |
def generate_targets(self, results): | |
"""Generate the gt targets for DRRG. | |
Args: | |
results (dict): The input result dictionary. | |
Returns: | |
results (dict): The output result dictionary. | |
""" | |
assert isinstance(results, dict) | |
polygon_masks = results['gt_masks'].masks | |
polygon_masks_ignore = results['gt_masks_ignore'].masks | |
h, w, _ = results['img_shape'] | |
gt_text_mask = self.generate_text_region_mask((h, w), polygon_masks) | |
gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore) | |
(center_lines, gt_center_region_mask, gt_top_height_map, | |
gt_bot_height_map, gt_sin_map, | |
gt_cos_map) = self.generate_center_mask_attrib_maps((h, w), | |
polygon_masks) | |
gt_comp_attribs = self.generate_comp_attribs(center_lines, | |
gt_text_mask, | |
gt_center_region_mask, | |
gt_top_height_map, | |
gt_bot_height_map, | |
gt_sin_map, gt_cos_map) | |
results['mask_fields'].clear() # rm gt_masks encoded by polygons | |
mapping = { | |
'gt_text_mask': gt_text_mask, | |
'gt_center_region_mask': gt_center_region_mask, | |
'gt_mask': gt_mask, | |
'gt_top_height_map': gt_top_height_map, | |
'gt_bot_height_map': gt_bot_height_map, | |
'gt_sin_map': gt_sin_map, | |
'gt_cos_map': gt_cos_map | |
} | |
for key, value in mapping.items(): | |
value = value if isinstance(value, list) else [value] | |
results[key] = BitmapMasks(value, h, w) | |
results['mask_fields'].append(key) | |
results['gt_comp_attribs'] = gt_comp_attribs | |
return results | |