tomofi's picture
Add application file
2366e36
raw
history blame
4.18 kB
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.core import BitmapMasks
from mmocr.models.builder import LOSSES
from mmocr.utils import check_argument
from . import PANLoss
@LOSSES.register_module()
class PSELoss(PANLoss):
r"""The class for implementing PSENet loss. This is partially adapted from
https://github.com/whai362/PSENet.
PSENet: `Shape Robust Text Detection with
Progressive Scale Expansion Network <https://arxiv.org/abs/1806.02559>`_.
Args:
alpha (float): Text loss coefficient, and :math:`1-\alpha` is the
kernel loss coefficient.
ohem_ratio (float): The negative/positive ratio in ohem.
reduction (str): The way to reduce the loss. Available options are
"mean" and "sum".
"""
def __init__(self,
alpha=0.7,
ohem_ratio=3,
reduction='mean',
kernel_sample_type='adaptive'):
super().__init__()
assert reduction in ['mean', 'sum'
], "reduction must be either of ['mean','sum']"
self.alpha = alpha
self.ohem_ratio = ohem_ratio
self.reduction = reduction
self.kernel_sample_type = kernel_sample_type
def forward(self, score_maps, downsample_ratio, gt_kernels, gt_mask):
"""Compute PSENet loss.
Args:
score_maps (tensor): The output tensor with size of Nx6xHxW.
downsample_ratio (float): The downsample ratio between score_maps
and the input img.
gt_kernels (list[BitmapMasks]): The kernel list with each element
being the text kernel mask for one img.
gt_mask (list[BitmapMasks]): The effective mask list
with each element being the effective mask for one img.
Returns:
dict: A loss dict with ``loss_text`` and ``loss_kernel``.
"""
assert check_argument.is_type_list(gt_kernels, BitmapMasks)
assert check_argument.is_type_list(gt_mask, BitmapMasks)
assert isinstance(downsample_ratio, float)
losses = []
pred_texts = score_maps[:, 0, :, :]
pred_kernels = score_maps[:, 1:, :, :]
feature_sz = score_maps.size()
gt_kernels = [item.rescale(downsample_ratio) for item in gt_kernels]
gt_kernels = self.bitmasks2tensor(gt_kernels, feature_sz[2:])
gt_kernels = [item.to(score_maps.device) for item in gt_kernels]
gt_mask = [item.rescale(downsample_ratio) for item in gt_mask]
gt_mask = self.bitmasks2tensor(gt_mask, feature_sz[2:])
gt_mask = [item.to(score_maps.device) for item in gt_mask]
# compute text loss
sampled_masks_text = self.ohem_batch(pred_texts.detach(),
gt_kernels[0], gt_mask[0])
loss_texts = self.dice_loss_with_logits(pred_texts, gt_kernels[0],
sampled_masks_text)
losses.append(self.alpha * loss_texts)
# compute kernel loss
if self.kernel_sample_type == 'hard':
sampled_masks_kernel = (gt_kernels[0] > 0.5).float() * (
gt_mask[0].float())
elif self.kernel_sample_type == 'adaptive':
sampled_masks_kernel = (pred_texts > 0).float() * (
gt_mask[0].float())
else:
raise NotImplementedError
num_kernel = pred_kernels.shape[1]
assert num_kernel == len(gt_kernels) - 1
loss_list = []
for idx in range(num_kernel):
loss_kernels = self.dice_loss_with_logits(
pred_kernels[:, idx, :, :], gt_kernels[1 + idx],
sampled_masks_kernel)
loss_list.append(loss_kernels)
losses.append((1 - self.alpha) * sum(loss_list) / len(loss_list))
if self.reduction == 'mean':
losses = [item.mean() for item in losses]
elif self.reduction == 'sum':
losses = [item.sum() for item in losses]
else:
raise NotImplementedError
results = dict(loss_text=losses[0], loss_kernel=losses[1])
return results