Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
def normalize_adjacent_matrix(A): | |
"""Normalize adjacent matrix for GCN. This code was partially adapted from | |
https://github.com/GXYM/DRRG licensed under the MIT license. | |
Args: | |
A (ndarray): The adjacent matrix. | |
returns: | |
G (ndarray): The normalized adjacent matrix. | |
""" | |
assert A.ndim == 2 | |
assert A.shape[0] == A.shape[1] | |
A = A + np.eye(A.shape[0]) | |
d = np.sum(A, axis=0) | |
d = np.clip(d, 0, None) | |
d_inv = np.power(d, -0.5).flatten() | |
d_inv[np.isinf(d_inv)] = 0.0 | |
d_inv = np.diag(d_inv) | |
G = A.dot(d_inv).transpose().dot(d_inv) | |
return G | |
def euclidean_distance_matrix(A, B): | |
"""Calculate the Euclidean distance matrix. | |
Args: | |
A (ndarray): The point sequence. | |
B (ndarray): The point sequence with the same dimensions as A. | |
returns: | |
D (ndarray): The Euclidean distance matrix. | |
""" | |
assert A.ndim == 2 | |
assert B.ndim == 2 | |
assert A.shape[1] == B.shape[1] | |
m = A.shape[0] | |
n = B.shape[0] | |
A_dots = (A * A).sum(axis=1).reshape((m, 1)) * np.ones(shape=(1, n)) | |
B_dots = (B * B).sum(axis=1) * np.ones(shape=(m, 1)) | |
D_squared = A_dots + B_dots - 2 * A.dot(B.T) | |
zero_mask = np.less(D_squared, 0.0) | |
D_squared[zero_mask] = 0.0 | |
D = np.sqrt(D_squared) | |
return D | |
def feature_embedding(input_feats, out_feat_len): | |
"""Embed features. This code was partially adapted from | |
https://github.com/GXYM/DRRG licensed under the MIT license. | |
Args: | |
input_feats (ndarray): The input features of shape (N, d), where N is | |
the number of nodes in graph, d is the input feature vector length. | |
out_feat_len (int): The length of output feature vector. | |
Returns: | |
embedded_feats (ndarray): The embedded features. | |
""" | |
assert input_feats.ndim == 2 | |
assert isinstance(out_feat_len, int) | |
assert out_feat_len >= input_feats.shape[1] | |
num_nodes = input_feats.shape[0] | |
feat_dim = input_feats.shape[1] | |
feat_repeat_times = out_feat_len // feat_dim | |
residue_dim = out_feat_len % feat_dim | |
if residue_dim > 0: | |
embed_wave = np.array([ | |
np.power(1000, 2.0 * (j // 2) / feat_repeat_times + 1) | |
for j in range(feat_repeat_times + 1) | |
]).reshape((feat_repeat_times + 1, 1, 1)) | |
repeat_feats = np.repeat( | |
np.expand_dims(input_feats, axis=0), feat_repeat_times, axis=0) | |
residue_feats = np.hstack([ | |
input_feats[:, 0:residue_dim], | |
np.zeros((num_nodes, feat_dim - residue_dim)) | |
]) | |
residue_feats = np.expand_dims(residue_feats, axis=0) | |
repeat_feats = np.concatenate([repeat_feats, residue_feats], axis=0) | |
embedded_feats = repeat_feats / embed_wave | |
embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2]) | |
embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2]) | |
embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape( | |
(num_nodes, -1))[:, 0:out_feat_len] | |
else: | |
embed_wave = np.array([ | |
np.power(1000, 2.0 * (j // 2) / feat_repeat_times) | |
for j in range(feat_repeat_times) | |
]).reshape((feat_repeat_times, 1, 1)) | |
repeat_feats = np.repeat( | |
np.expand_dims(input_feats, axis=0), feat_repeat_times, axis=0) | |
embedded_feats = repeat_feats / embed_wave | |
embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2]) | |
embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2]) | |
embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape( | |
(num_nodes, -1)).astype(np.float32) | |
return embedded_feats | |