Spaces:
Runtime error
Runtime error
_base_ = [ | |
'../../_base_/default_runtime.py', | |
'../../_base_/schedules/schedule_adam_step_5e.py', | |
'../../_base_/recog_pipelines/sar_pipeline.py', | |
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py', | |
'../../_base_/recog_datasets/academic_test.py' | |
] | |
train_list = {{_base_.train_list}} | |
test_list = {{_base_.test_list}} | |
train_pipeline = {{_base_.train_pipeline}} | |
test_pipeline = {{_base_.test_pipeline}} | |
label_convertor = dict( | |
type='AttnConvertor', dict_type='DICT90', with_unknown=True) | |
model = dict( | |
type='SARNet', | |
backbone=dict(type='ResNet31OCR'), | |
encoder=dict( | |
type='SAREncoder', | |
enc_bi_rnn=False, | |
enc_do_rnn=0.1, | |
enc_gru=False, | |
), | |
decoder=dict( | |
type='SequentialSARDecoder', | |
enc_bi_rnn=False, | |
dec_bi_rnn=False, | |
dec_do_rnn=0, | |
dec_gru=False, | |
pred_dropout=0.1, | |
d_k=512, | |
pred_concat=True), | |
loss=dict(type='SARLoss'), | |
label_convertor=label_convertor, | |
max_seq_len=30) | |
data = dict( | |
samples_per_gpu=64, | |
workers_per_gpu=2, | |
val_dataloader=dict(samples_per_gpu=1), | |
test_dataloader=dict(samples_per_gpu=1), | |
train=dict( | |
type='UniformConcatDataset', | |
datasets=train_list, | |
pipeline=train_pipeline), | |
val=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline), | |
test=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline)) | |
evaluation = dict(interval=1, metric='acc') | |