Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch | |
from mmocr.models.builder import (RECOGNIZERS, build_backbone, build_convertor, | |
build_decoder, build_encoder, build_fuser, | |
build_loss, build_preprocessor) | |
from .encode_decode_recognizer import EncodeDecodeRecognizer | |
class ABINet(EncodeDecodeRecognizer): | |
"""Implementation of `Read Like Humans: Autonomous, Bidirectional and | |
Iterative LanguageModeling for Scene Text Recognition. | |
<https://arxiv.org/pdf/2103.06495.pdf>`_ | |
""" | |
def __init__(self, | |
preprocessor=None, | |
backbone=None, | |
encoder=None, | |
decoder=None, | |
iter_size=1, | |
fuser=None, | |
loss=None, | |
label_convertor=None, | |
train_cfg=None, | |
test_cfg=None, | |
max_seq_len=40, | |
pretrained=None, | |
init_cfg=None): | |
super(EncodeDecodeRecognizer, self).__init__(init_cfg=init_cfg) | |
# Label convertor (str2tensor, tensor2str) | |
assert label_convertor is not None | |
label_convertor.update(max_seq_len=max_seq_len) | |
self.label_convertor = build_convertor(label_convertor) | |
# Preprocessor module, e.g., TPS | |
self.preprocessor = None | |
if preprocessor is not None: | |
self.preprocessor = build_preprocessor(preprocessor) | |
# Backbone | |
assert backbone is not None | |
self.backbone = build_backbone(backbone) | |
# Encoder module | |
self.encoder = None | |
if encoder is not None: | |
self.encoder = build_encoder(encoder) | |
# Decoder module | |
self.decoder = None | |
if decoder is not None: | |
decoder.update(num_classes=self.label_convertor.num_classes()) | |
decoder.update(start_idx=self.label_convertor.start_idx) | |
decoder.update(padding_idx=self.label_convertor.padding_idx) | |
decoder.update(max_seq_len=max_seq_len) | |
self.decoder = build_decoder(decoder) | |
# Loss | |
assert loss is not None | |
self.loss = build_loss(loss) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self.max_seq_len = max_seq_len | |
if pretrained is not None: | |
warnings.warn('DeprecationWarning: pretrained is a deprecated \ | |
key, please consider using init_cfg') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
self.iter_size = iter_size | |
self.fuser = None | |
if fuser is not None: | |
self.fuser = build_fuser(fuser) | |
def forward_train(self, img, img_metas): | |
""" | |
Args: | |
img (tensor): Input images of shape (N, C, H, W). | |
Typically these should be mean centered and std scaled. | |
img_metas (list[dict]): A list of image info dict where each dict | |
contains: 'img_shape', 'filename', and may also contain | |
'ori_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
:class:`mmdet.datasets.pipelines.Collect`. | |
Returns: | |
dict[str, tensor]: A dictionary of loss components. | |
""" | |
for img_meta in img_metas: | |
valid_ratio = 1.0 * img_meta['resize_shape'][1] / img.size(-1) | |
img_meta['valid_ratio'] = valid_ratio | |
feat = self.extract_feat(img) | |
gt_labels = [img_meta['text'] for img_meta in img_metas] | |
targets_dict = self.label_convertor.str2tensor(gt_labels) | |
text_logits = None | |
out_enc = None | |
if self.encoder is not None: | |
out_enc = self.encoder(feat) | |
text_logits = out_enc['logits'] | |
out_decs = [] | |
out_fusers = [] | |
for _ in range(self.iter_size): | |
if self.decoder is not None: | |
out_dec = self.decoder( | |
feat, | |
text_logits, | |
targets_dict, | |
img_metas, | |
train_mode=True) | |
out_decs.append(out_dec) | |
if self.fuser is not None: | |
out_fuser = self.fuser(out_enc['feature'], out_dec['feature']) | |
text_logits = out_fuser['logits'] | |
out_fusers.append(out_fuser) | |
outputs = dict( | |
out_enc=out_enc, out_decs=out_decs, out_fusers=out_fusers) | |
losses = self.loss(outputs, targets_dict, img_metas) | |
return losses | |
def simple_test(self, img, img_metas, **kwargs): | |
"""Test function with test time augmentation. | |
Args: | |
imgs (torch.Tensor): Image input tensor. | |
img_metas (list[dict]): List of image information. | |
Returns: | |
list[str]: Text label result of each image. | |
""" | |
for img_meta in img_metas: | |
valid_ratio = 1.0 * img_meta['resize_shape'][1] / img.size(-1) | |
img_meta['valid_ratio'] = valid_ratio | |
feat = self.extract_feat(img) | |
text_logits = None | |
out_enc = None | |
if self.encoder is not None: | |
out_enc = self.encoder(feat) | |
text_logits = out_enc['logits'] | |
out_decs = [] | |
out_fusers = [] | |
for _ in range(self.iter_size): | |
if self.decoder is not None: | |
out_dec = self.decoder( | |
feat, text_logits, img_metas=img_metas, train_mode=False) | |
out_decs.append(out_dec) | |
if self.fuser is not None: | |
out_fuser = self.fuser(out_enc['feature'], out_dec['feature']) | |
text_logits = out_fuser['logits'] | |
out_fusers.append(out_fuser) | |
if len(out_fusers) > 0: | |
ret = out_fusers[-1] | |
elif len(out_decs) > 0: | |
ret = out_decs[-1] | |
else: | |
ret = out_enc | |
# early return to avoid post processing | |
if torch.onnx.is_in_onnx_export(): | |
return ret['logits'] | |
label_indexes, label_scores = self.label_convertor.tensor2idx( | |
ret['logits'], img_metas) | |
label_strings = self.label_convertor.idx2str(label_indexes) | |
# flatten batch results | |
results = [] | |
for string, score in zip(label_strings, label_scores): | |
results.append(dict(text=string, score=score)) | |
return results | |