Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mmcv.runner import BaseModule | |
from mmocr.models.builder import HEADS | |
from mmocr.utils import check_argument | |
from .head_mixin import HeadMixin | |
class PANHead(HeadMixin, BaseModule): | |
"""The class for PANet head. | |
Args: | |
in_channels (list[int]): A list of 4 numbers of input channels. | |
out_channels (int): Number of output channels. | |
downsample_ratio (float): Downsample ratio. | |
loss (dict): Configuration dictionary for loss type. Supported loss | |
types are "PANLoss" and "PSELoss". | |
postprocessor (dict): Config of postprocessor for PANet. | |
train_cfg, test_cfg (dict): Depreciated. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
downsample_ratio=0.25, | |
loss=dict(type='PANLoss'), | |
postprocessor=dict( | |
type='PANPostprocessor', text_repr_type='poly'), | |
train_cfg=None, | |
test_cfg=None, | |
init_cfg=dict( | |
type='Normal', | |
mean=0, | |
std=0.01, | |
override=dict(name='out_conv')), | |
**kwargs): | |
old_keys = ['text_repr_type', 'decoding_type'] | |
for key in old_keys: | |
if kwargs.get(key, None): | |
postprocessor[key] = kwargs.get(key) | |
warnings.warn( | |
f'{key} is deprecated, please specify ' | |
'it in postprocessor config dict. See ' | |
'https://github.com/open-mmlab/mmocr/pull/640' | |
' for details.', UserWarning) | |
BaseModule.__init__(self, init_cfg=init_cfg) | |
HeadMixin.__init__(self, loss, postprocessor) | |
assert check_argument.is_type_list(in_channels, int) | |
assert isinstance(out_channels, int) | |
assert 0 <= downsample_ratio <= 1 | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.downsample_ratio = downsample_ratio | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
self.out_conv = nn.Conv2d( | |
in_channels=np.sum(np.array(in_channels)), | |
out_channels=out_channels, | |
kernel_size=1) | |
def forward(self, inputs): | |
r""" | |
Args: | |
inputs (list[Tensor] | Tensor): Each tensor has the shape of | |
:math:`(N, C_i, W, H)`, where :math:`\sum_iC_i=C_{in}` and | |
:math:`C_{in}` is ``input_channels``. | |
Returns: | |
Tensor: A tensor of shape :math:`(N, C_{out}, W, H)` where | |
:math:`C_{out}` is ``output_channels``. | |
""" | |
if isinstance(inputs, tuple): | |
outputs = torch.cat(inputs, dim=1) | |
else: | |
outputs = inputs | |
outputs = self.out_conv(outputs) | |
return outputs | |