MMOCR / mmocr /models /builder.py
tomofi's picture
Add application file
2366e36
raw
history blame
4.45 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch.nn as nn
from mmcv.cnn import ACTIVATION_LAYERS as MMCV_ACTIVATION_LAYERS
from mmcv.cnn import UPSAMPLE_LAYERS as MMCV_UPSAMPLE_LAYERS
from mmcv.utils import Registry, build_from_cfg
from mmdet.models.builder import BACKBONES as MMDET_BACKBONES
CONVERTORS = Registry('convertor')
ENCODERS = Registry('encoder')
DECODERS = Registry('decoder')
PREPROCESSOR = Registry('preprocessor')
POSTPROCESSOR = Registry('postprocessor')
UPSAMPLE_LAYERS = Registry('upsample layer', parent=MMCV_UPSAMPLE_LAYERS)
BACKBONES = Registry('models', parent=MMDET_BACKBONES)
LOSSES = BACKBONES
DETECTORS = BACKBONES
ROI_EXTRACTORS = BACKBONES
HEADS = BACKBONES
NECKS = BACKBONES
FUSERS = BACKBONES
RECOGNIZERS = BACKBONES
ACTIVATION_LAYERS = Registry('activation layer', parent=MMCV_ACTIVATION_LAYERS)
def build_recognizer(cfg, train_cfg=None, test_cfg=None):
"""Build recognizer."""
return build_from_cfg(cfg, RECOGNIZERS,
dict(train_cfg=train_cfg, test_cfg=test_cfg))
def build_convertor(cfg):
"""Build label convertor for scene text recognizer."""
return build_from_cfg(cfg, CONVERTORS)
def build_encoder(cfg):
"""Build encoder for scene text recognizer."""
return build_from_cfg(cfg, ENCODERS)
def build_decoder(cfg):
"""Build decoder for scene text recognizer."""
return build_from_cfg(cfg, DECODERS)
def build_preprocessor(cfg):
"""Build preprocessor for scene text recognizer."""
return build_from_cfg(cfg, PREPROCESSOR)
def build_postprocessor(cfg):
"""Build postprocessor for scene text detector."""
return build_from_cfg(cfg, POSTPROCESSOR)
def build_roi_extractor(cfg):
"""Build roi extractor."""
return ROI_EXTRACTORS.build(cfg)
def build_loss(cfg):
"""Build loss."""
return LOSSES.build(cfg)
def build_backbone(cfg):
"""Build backbone."""
return BACKBONES.build(cfg)
def build_head(cfg):
"""Build head."""
return HEADS.build(cfg)
def build_neck(cfg):
"""Build neck."""
return NECKS.build(cfg)
def build_fuser(cfg):
"""Build fuser."""
return FUSERS.build(cfg)
def build_upsample_layer(cfg, *args, **kwargs):
"""Build upsample layer.
Args:
cfg (dict): The upsample layer config, which should contain:
- type (str): Layer type.
- scale_factor (int): Upsample ratio, which is not applicable to
deconv.
- layer args: Args needed to instantiate a upsample layer.
args (argument list): Arguments passed to the ``__init__``
method of the corresponding conv layer.
kwargs (keyword arguments): Keyword arguments passed to the
``__init__`` method of the corresponding conv layer.
Returns:
nn.Module: Created upsample layer.
"""
if not isinstance(cfg, dict):
raise TypeError(f'cfg must be a dict, but got {type(cfg)}')
if 'type' not in cfg:
raise KeyError(
f'the cfg dict must contain the key "type", but got {cfg}')
cfg_ = cfg.copy()
layer_type = cfg_.pop('type')
if layer_type not in UPSAMPLE_LAYERS:
raise KeyError(f'Unrecognized upsample type {layer_type}')
else:
upsample = UPSAMPLE_LAYERS.get(layer_type)
if upsample is nn.Upsample:
cfg_['mode'] = layer_type
layer = upsample(*args, **kwargs, **cfg_)
return layer
def build_activation_layer(cfg):
"""Build activation layer.
Args:
cfg (dict): The activation layer config, which should contain:
- type (str): Layer type.
- layer args: Args needed to instantiate an activation layer.
Returns:
nn.Module: Created activation layer.
"""
return build_from_cfg(cfg, ACTIVATION_LAYERS)
def build_detector(cfg, train_cfg=None, test_cfg=None):
"""Build detector."""
if train_cfg is not None or test_cfg is not None:
warnings.warn(
'train_cfg and test_cfg is deprecated, '
'please specify them in model', UserWarning)
assert cfg.get('train_cfg') is None or train_cfg is None, \
'train_cfg specified in both outer field and model field '
assert cfg.get('test_cfg') is None or test_cfg is None, \
'test_cfg specified in both outer field and model field '
return DETECTORS.build(
cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg))