Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import re | |
from difflib import SequenceMatcher | |
from rapidfuzz import string_metric | |
def cal_true_positive_char(pred, gt): | |
"""Calculate correct character number in prediction. | |
Args: | |
pred (str): Prediction text. | |
gt (str): Ground truth text. | |
Returns: | |
true_positive_char_num (int): The true positive number. | |
""" | |
all_opt = SequenceMatcher(None, pred, gt) | |
true_positive_char_num = 0 | |
for opt, _, _, s2, e2 in all_opt.get_opcodes(): | |
if opt == 'equal': | |
true_positive_char_num += (e2 - s2) | |
else: | |
pass | |
return true_positive_char_num | |
def count_matches(pred_texts, gt_texts): | |
"""Count the various match number for metric calculation. | |
Args: | |
pred_texts (list[str]): Predicted text string. | |
gt_texts (list[str]): Ground truth text string. | |
Returns: | |
match_res: (dict[str: int]): Match number used for | |
metric calculation. | |
""" | |
match_res = { | |
'gt_char_num': 0, | |
'pred_char_num': 0, | |
'true_positive_char_num': 0, | |
'gt_word_num': 0, | |
'match_word_num': 0, | |
'match_word_ignore_case': 0, | |
'match_word_ignore_case_symbol': 0 | |
} | |
comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]') | |
norm_ed_sum = 0.0 | |
for pred_text, gt_text in zip(pred_texts, gt_texts): | |
if gt_text == pred_text: | |
match_res['match_word_num'] += 1 | |
gt_text_lower = gt_text.lower() | |
pred_text_lower = pred_text.lower() | |
if gt_text_lower == pred_text_lower: | |
match_res['match_word_ignore_case'] += 1 | |
gt_text_lower_ignore = comp.sub('', gt_text_lower) | |
pred_text_lower_ignore = comp.sub('', pred_text_lower) | |
if gt_text_lower_ignore == pred_text_lower_ignore: | |
match_res['match_word_ignore_case_symbol'] += 1 | |
match_res['gt_word_num'] += 1 | |
# normalized edit distance | |
edit_dist = string_metric.levenshtein(pred_text_lower_ignore, | |
gt_text_lower_ignore) | |
norm_ed = float(edit_dist) / max(1, len(gt_text_lower_ignore), | |
len(pred_text_lower_ignore)) | |
norm_ed_sum += norm_ed | |
# number to calculate char level recall & precision | |
match_res['gt_char_num'] += len(gt_text_lower_ignore) | |
match_res['pred_char_num'] += len(pred_text_lower_ignore) | |
true_positive_char_num = cal_true_positive_char( | |
pred_text_lower_ignore, gt_text_lower_ignore) | |
match_res['true_positive_char_num'] += true_positive_char_num | |
normalized_edit_distance = norm_ed_sum / max(1, len(gt_texts)) | |
match_res['ned'] = normalized_edit_distance | |
return match_res | |
def eval_ocr_metric(pred_texts, gt_texts): | |
"""Evaluate the text recognition performance with metric: word accuracy and | |
1-N.E.D. See https://rrc.cvc.uab.es/?ch=14&com=tasks for details. | |
Args: | |
pred_texts (list[str]): Text strings of prediction. | |
gt_texts (list[str]): Text strings of ground truth. | |
Returns: | |
eval_res (dict[str: float]): Metric dict for text recognition, include: | |
- word_acc: Accuracy in word level. | |
- word_acc_ignore_case: Accuracy in word level, ignore letter case. | |
- word_acc_ignore_case_symbol: Accuracy in word level, ignore | |
letter case and symbol. (default metric for | |
academic evaluation) | |
- char_recall: Recall in character level, ignore | |
letter case and symbol. | |
- char_precision: Precision in character level, ignore | |
letter case and symbol. | |
- 1-N.E.D: 1 - normalized_edit_distance. | |
""" | |
assert isinstance(pred_texts, list) | |
assert isinstance(gt_texts, list) | |
assert len(pred_texts) == len(gt_texts) | |
match_res = count_matches(pred_texts, gt_texts) | |
eps = 1e-8 | |
char_recall = 1.0 * match_res['true_positive_char_num'] / ( | |
eps + match_res['gt_char_num']) | |
char_precision = 1.0 * match_res['true_positive_char_num'] / ( | |
eps + match_res['pred_char_num']) | |
word_acc = 1.0 * match_res['match_word_num'] / ( | |
eps + match_res['gt_word_num']) | |
word_acc_ignore_case = 1.0 * match_res['match_word_ignore_case'] / ( | |
eps + match_res['gt_word_num']) | |
word_acc_ignore_case_symbol = 1.0 * match_res[ | |
'match_word_ignore_case_symbol'] / ( | |
eps + match_res['gt_word_num']) | |
eval_res = {} | |
eval_res['word_acc'] = word_acc | |
eval_res['word_acc_ignore_case'] = word_acc_ignore_case | |
eval_res['word_acc_ignore_case_symbol'] = word_acc_ignore_case_symbol | |
eval_res['char_recall'] = char_recall | |
eval_res['char_precision'] = char_precision | |
eval_res['1-N.E.D'] = 1.0 - match_res['ned'] | |
for key, value in eval_res.items(): | |
eval_res[key] = float('{:.4f}'.format(value)) | |
return eval_res | |