Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import mmcv | |
import numpy as np | |
from mmdet.core import BitmapMasks, PolygonMasks | |
from mmdet.datasets.builder import PIPELINES | |
from mmdet.datasets.pipelines.loading import LoadAnnotations, LoadImageFromFile | |
class LoadTextAnnotations(LoadAnnotations): | |
"""Load annotations for text detection. | |
Args: | |
with_bbox (bool): Whether to parse and load the bbox annotation. | |
Default: True. | |
with_label (bool): Whether to parse and load the label annotation. | |
Default: True. | |
with_mask (bool): Whether to parse and load the mask annotation. | |
Default: False. | |
with_seg (bool): Whether to parse and load the semantic segmentation | |
annotation. Default: False. | |
poly2mask (bool): Whether to convert the instance masks from polygons | |
to bitmaps. Default: True. | |
use_img_shape (bool): Use the shape of loaded image from | |
previous pipeline ``LoadImageFromFile`` to generate mask. | |
""" | |
def __init__(self, | |
with_bbox=True, | |
with_label=True, | |
with_mask=False, | |
with_seg=False, | |
poly2mask=True, | |
use_img_shape=False): | |
super().__init__( | |
with_bbox=with_bbox, | |
with_label=with_label, | |
with_mask=with_mask, | |
with_seg=with_seg, | |
poly2mask=poly2mask) | |
self.use_img_shape = use_img_shape | |
def process_polygons(self, polygons): | |
"""Convert polygons to list of ndarray and filter invalid polygons. | |
Args: | |
polygons (list[list]): Polygons of one instance. | |
Returns: | |
list[numpy.ndarray]: Processed polygons. | |
""" | |
polygons = [np.array(p).astype(np.float32) for p in polygons] | |
valid_polygons = [] | |
for polygon in polygons: | |
if len(polygon) % 2 == 0 and len(polygon) >= 6: | |
valid_polygons.append(polygon) | |
return valid_polygons | |
def _load_masks(self, results): | |
ann_info = results['ann_info'] | |
h, w = results['img_info']['height'], results['img_info']['width'] | |
if self.use_img_shape: | |
if results.get('ori_shape', None): | |
h, w = results['ori_shape'][:2] | |
results['img_info']['height'] = h | |
results['img_info']['width'] = w | |
else: | |
warnings.warn('"ori_shape" not in results, use the shape ' | |
'in "img_info" instead.') | |
gt_masks = ann_info['masks'] | |
if self.poly2mask: | |
gt_masks = BitmapMasks( | |
[self._poly2mask(mask, h, w) for mask in gt_masks], h, w) | |
else: | |
gt_masks = PolygonMasks( | |
[self.process_polygons(polygons) for polygons in gt_masks], h, | |
w) | |
gt_masks_ignore = ann_info.get('masks_ignore', None) | |
if gt_masks_ignore is not None: | |
if self.poly2mask: | |
gt_masks_ignore = BitmapMasks( | |
[self._poly2mask(mask, h, w) for mask in gt_masks_ignore], | |
h, w) | |
else: | |
gt_masks_ignore = PolygonMasks([ | |
self.process_polygons(polygons) | |
for polygons in gt_masks_ignore | |
], h, w) | |
results['gt_masks_ignore'] = gt_masks_ignore | |
results['mask_fields'].append('gt_masks_ignore') | |
results['gt_masks'] = gt_masks | |
results['mask_fields'].append('gt_masks') | |
return results | |
class LoadImageFromNdarray(LoadImageFromFile): | |
"""Load an image from np.ndarray. | |
Similar with :obj:`LoadImageFromFile`, but the image read from | |
``results['img']``, which is np.ndarray. | |
""" | |
def __call__(self, results): | |
"""Call functions to add image meta information. | |
Args: | |
results (dict): Result dict with Webcam read image in | |
``results['img']``. | |
Returns: | |
dict: The dict contains loaded image and meta information. | |
""" | |
assert results['img'].dtype == 'uint8' | |
img = results['img'] | |
if self.color_type == 'grayscale' and img.shape[2] == 3: | |
img = mmcv.bgr2gray(img, keepdim=True) | |
if self.color_type == 'color' and img.shape[2] == 1: | |
img = mmcv.gray2bgr(img) | |
if self.to_float32: | |
img = img.astype(np.float32) | |
results['filename'] = None | |
results['ori_filename'] = None | |
results['img'] = img | |
results['img_shape'] = img.shape | |
results['ori_shape'] = img.shape | |
results['img_fields'] = ['img'] | |
return results | |