tomofi's picture
Add application file
2366e36
raw
history blame
17 kB
# Copyright (c) OpenMMLab. All rights reserved.
import functools
import operator
import cv2
import numpy as np
import pyclipper
from numpy.fft import ifft
from numpy.linalg import norm
from shapely.geometry import Polygon
from mmocr.core.evaluation.utils import boundary_iou
def filter_instance(area, confidence, min_area, min_confidence):
return bool(area < min_area or confidence < min_confidence)
def box_score_fast(bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def unclip(box, unclip_ratio=1.5):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def fill_hole(input_mask):
h, w = input_mask.shape
canvas = np.zeros((h + 2, w + 2), np.uint8)
canvas[1:h + 1, 1:w + 1] = input_mask.copy()
mask = np.zeros((h + 4, w + 4), np.uint8)
cv2.floodFill(canvas, mask, (0, 0), 1)
canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)
return ~canvas | input_mask
def centralize(points_yx,
normal_sin,
normal_cos,
radius,
contour_mask,
step_ratio=0.03):
h, w = contour_mask.shape
top_yx = bot_yx = points_yx
step_flags = np.ones((len(points_yx), 1), dtype=np.bool)
step = step_ratio * radius * np.hstack([normal_sin, normal_cos])
while np.any(step_flags):
next_yx = np.array(top_yx + step, dtype=np.int32)
next_y, next_x = next_yx[:, 0], next_yx[:, 1]
step_flags = (next_y >= 0) & (next_y < h) & (next_x > 0) & (
next_x < w) & contour_mask[np.clip(next_y, 0, h - 1),
np.clip(next_x, 0, w - 1)]
top_yx = top_yx + step_flags.reshape((-1, 1)) * step
step_flags = np.ones((len(points_yx), 1), dtype=np.bool)
while np.any(step_flags):
next_yx = np.array(bot_yx - step, dtype=np.int32)
next_y, next_x = next_yx[:, 0], next_yx[:, 1]
step_flags = (next_y >= 0) & (next_y < h) & (next_x > 0) & (
next_x < w) & contour_mask[np.clip(next_y, 0, h - 1),
np.clip(next_x, 0, w - 1)]
bot_yx = bot_yx - step_flags.reshape((-1, 1)) * step
centers = np.array((top_yx + bot_yx) * 0.5, dtype=np.int32)
return centers
def merge_disks(disks, disk_overlap_thr):
xy = disks[:, 0:2]
radius = disks[:, 2]
scores = disks[:, 3]
order = scores.argsort()[::-1]
merged_disks = []
while order.size > 0:
if order.size == 1:
merged_disks.append(disks[order])
break
i = order[0]
d = norm(xy[i] - xy[order[1:]], axis=1)
ri = radius[i]
r = radius[order[1:]]
d_thr = (ri + r) * disk_overlap_thr
merge_inds = np.where(d <= d_thr)[0] + 1
if merge_inds.size > 0:
merge_order = np.hstack([i, order[merge_inds]])
merged_disks.append(np.mean(disks[merge_order], axis=0))
else:
merged_disks.append(disks[i])
inds = np.where(d > d_thr)[0] + 1
order = order[inds]
merged_disks = np.vstack(merged_disks)
return merged_disks
def poly_nms(polygons, threshold):
assert isinstance(polygons, list)
polygons = np.array(sorted(polygons, key=lambda x: x[-1]))
keep_poly = []
index = [i for i in range(polygons.shape[0])]
while len(index) > 0:
keep_poly.append(polygons[index[-1]].tolist())
A = polygons[index[-1]][:-1]
index = np.delete(index, -1)
iou_list = np.zeros((len(index), ))
for i in range(len(index)):
B = polygons[index[i]][:-1]
iou_list[i] = boundary_iou(A, B, 1)
remove_index = np.where(iou_list > threshold)
index = np.delete(index, remove_index)
return keep_poly
def fourier2poly(fourier_coeff, num_reconstr_points=50):
""" Inverse Fourier transform
Args:
fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
with n and k being candidates number and Fourier degree
respectively.
num_reconstr_points (int): Number of reconstructed polygon points.
Returns:
Polygons (ndarray): The reconstructed polygons shaped (n, n')
"""
a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex')
k = (len(fourier_coeff[0]) - 1) // 2
a[:, 0:k + 1] = fourier_coeff[:, k:]
a[:, -k:] = fourier_coeff[:, :k]
poly_complex = ifft(a) * num_reconstr_points
polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
polygon[:, :, 0] = poly_complex.real
polygon[:, :, 1] = poly_complex.imag
return polygon.astype('int32').reshape((len(fourier_coeff), -1))
class Node:
def __init__(self, ind):
self.__ind = ind
self.__links = set()
@property
def ind(self):
return self.__ind
@property
def links(self):
return set(self.__links)
def add_link(self, link_node):
self.__links.add(link_node)
link_node.__links.add(self)
def graph_propagation(edges, scores, text_comps, edge_len_thr=50.):
"""Propagate edge score information and construct graph. This code was
partially adapted from https://github.com/GXYM/DRRG licensed under the MIT
license.
Args:
edges (ndarray): The edge array of shape N * 2, each row is a node
index pair that makes up an edge in graph.
scores (ndarray): The edge score array.
text_comps (ndarray): The text components.
edge_len_thr (float): The edge length threshold.
Returns:
vertices (list[Node]): The Nodes in graph.
score_dict (dict): The edge score dict.
"""
assert edges.ndim == 2
assert edges.shape[1] == 2
assert edges.shape[0] == scores.shape[0]
assert text_comps.ndim == 2
assert isinstance(edge_len_thr, float)
edges = np.sort(edges, axis=1)
score_dict = {}
for i, edge in enumerate(edges):
if text_comps is not None:
box1 = text_comps[edge[0], :8].reshape(4, 2)
box2 = text_comps[edge[1], :8].reshape(4, 2)
center1 = np.mean(box1, axis=0)
center2 = np.mean(box2, axis=0)
distance = norm(center1 - center2)
if distance > edge_len_thr:
scores[i] = 0
if (edge[0], edge[1]) in score_dict:
score_dict[edge[0], edge[1]] = 0.5 * (
score_dict[edge[0], edge[1]] + scores[i])
else:
score_dict[edge[0], edge[1]] = scores[i]
nodes = np.sort(np.unique(edges.flatten()))
mapping = -1 * np.ones((np.max(nodes) + 1), dtype=np.int)
mapping[nodes] = np.arange(nodes.shape[0])
order_inds = mapping[edges]
vertices = [Node(node) for node in nodes]
for ind in order_inds:
vertices[ind[0]].add_link(vertices[ind[1]])
return vertices, score_dict
def connected_components(nodes, score_dict, link_thr):
"""Conventional connected components searching. This code was partially
adapted from https://github.com/GXYM/DRRG licensed under the MIT license.
Args:
nodes (list[Node]): The list of Node objects.
score_dict (dict): The edge score dict.
link_thr (float): The link threshold.
Returns:
clusters (List[list[Node]]): The clustered Node objects.
"""
assert isinstance(nodes, list)
assert all([isinstance(node, Node) for node in nodes])
assert isinstance(score_dict, dict)
assert isinstance(link_thr, float)
clusters = []
nodes = set(nodes)
while nodes:
node = nodes.pop()
cluster = {node}
node_queue = [node]
while node_queue:
node = node_queue.pop(0)
neighbors = set([
neighbor for neighbor in node.links if
score_dict[tuple(sorted([node.ind, neighbor.ind]))] >= link_thr
])
neighbors.difference_update(cluster)
nodes.difference_update(neighbors)
cluster.update(neighbors)
node_queue.extend(neighbors)
clusters.append(list(cluster))
return clusters
def clusters2labels(clusters, num_nodes):
"""Convert clusters of Node to text component labels. This code was
partially adapted from https://github.com/GXYM/DRRG licensed under the MIT
license.
Args:
clusters (List[list[Node]]): The clusters of Node objects.
num_nodes (int): The total node number of graphs in an image.
Returns:
node_labels (ndarray): The node label array.
"""
assert isinstance(clusters, list)
assert all([isinstance(cluster, list) for cluster in clusters])
assert all(
[isinstance(node, Node) for cluster in clusters for node in cluster])
assert isinstance(num_nodes, int)
node_labels = np.zeros(num_nodes)
for cluster_ind, cluster in enumerate(clusters):
for node in cluster:
node_labels[node.ind] = cluster_ind
return node_labels
def remove_single(text_comps, comp_pred_labels):
"""Remove isolated text components. This code was partially adapted from
https://github.com/GXYM/DRRG licensed under the MIT license.
Args:
text_comps (ndarray): The text components.
comp_pred_labels (ndarray): The clustering labels of text components.
Returns:
filtered_text_comps (ndarray): The text components with isolated ones
removed.
comp_pred_labels (ndarray): The clustering labels with labels of
isolated text components removed.
"""
assert text_comps.ndim == 2
assert text_comps.shape[0] == comp_pred_labels.shape[0]
single_flags = np.zeros_like(comp_pred_labels)
pred_labels = np.unique(comp_pred_labels)
for label in pred_labels:
current_label_flag = (comp_pred_labels == label)
if np.sum(current_label_flag) == 1:
single_flags[np.where(current_label_flag)[0][0]] = 1
keep_ind = [i for i in range(len(comp_pred_labels)) if not single_flags[i]]
filtered_text_comps = text_comps[keep_ind, :]
filtered_labels = comp_pred_labels[keep_ind]
return filtered_text_comps, filtered_labels
def norm2(point1, point2):
return ((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)**0.5
def min_connect_path(points):
"""Find the shortest path to traverse all points. This code was partially
adapted from https://github.com/GXYM/DRRG licensed under the MIT license.
Args:
points(List[list[int]]): The point sequence [[x0, y0], [x1, y1], ...].
Returns:
shortest_path(List[list[int]]): The shortest index path.
"""
assert isinstance(points, list)
assert all([isinstance(point, list) for point in points])
assert all([isinstance(coord, int) for point in points for coord in point])
points_queue = points.copy()
shortest_path = []
current_edge = [[], []]
edge_dict0 = {}
edge_dict1 = {}
current_edge[0] = points_queue[0]
current_edge[1] = points_queue[0]
points_queue.remove(points_queue[0])
while points_queue:
for point in points_queue:
length0 = norm2(point, current_edge[0])
edge_dict0[length0] = [point, current_edge[0]]
length1 = norm2(current_edge[1], point)
edge_dict1[length1] = [current_edge[1], point]
key0 = min(edge_dict0.keys())
key1 = min(edge_dict1.keys())
if key0 <= key1:
start = edge_dict0[key0][0]
end = edge_dict0[key0][1]
shortest_path.insert(0, [points.index(start), points.index(end)])
points_queue.remove(start)
current_edge[0] = start
else:
start = edge_dict1[key1][0]
end = edge_dict1[key1][1]
shortest_path.append([points.index(start), points.index(end)])
points_queue.remove(end)
current_edge[1] = end
edge_dict0 = {}
edge_dict1 = {}
shortest_path = functools.reduce(operator.concat, shortest_path)
shortest_path = sorted(set(shortest_path), key=shortest_path.index)
return shortest_path
def in_contour(cont, point):
x, y = point
is_inner = cv2.pointPolygonTest(cont, (int(x), int(y)), False) > 0.5
return is_inner
def fix_corner(top_line, bot_line, start_box, end_box):
"""Add corner points to predicted side lines. This code was partially
adapted from https://github.com/GXYM/DRRG licensed under the MIT license.
Args:
top_line (List[list[int]]): The predicted top sidelines of text
instance.
bot_line (List[list[int]]): The predicted bottom sidelines of text
instance.
start_box (ndarray): The first text component box.
end_box (ndarray): The last text component box.
Returns:
top_line (List[list[int]]): The top sidelines with corner point added.
bot_line (List[list[int]]): The bottom sidelines with corner point
added.
"""
assert isinstance(top_line, list)
assert all(isinstance(point, list) for point in top_line)
assert isinstance(bot_line, list)
assert all(isinstance(point, list) for point in bot_line)
assert start_box.shape == end_box.shape == (4, 2)
contour = np.array(top_line + bot_line[::-1])
start_left_mid = (start_box[0] + start_box[3]) / 2
start_right_mid = (start_box[1] + start_box[2]) / 2
end_left_mid = (end_box[0] + end_box[3]) / 2
end_right_mid = (end_box[1] + end_box[2]) / 2
if not in_contour(contour, start_left_mid):
top_line.insert(0, start_box[0].tolist())
bot_line.insert(0, start_box[3].tolist())
elif not in_contour(contour, start_right_mid):
top_line.insert(0, start_box[1].tolist())
bot_line.insert(0, start_box[2].tolist())
if not in_contour(contour, end_left_mid):
top_line.append(end_box[0].tolist())
bot_line.append(end_box[3].tolist())
elif not in_contour(contour, end_right_mid):
top_line.append(end_box[1].tolist())
bot_line.append(end_box[2].tolist())
return top_line, bot_line
def comps2boundaries(text_comps, comp_pred_labels):
"""Construct text instance boundaries from clustered text components. This
code was partially adapted from https://github.com/GXYM/DRRG licensed under
the MIT license.
Args:
text_comps (ndarray): The text components.
comp_pred_labels (ndarray): The clustering labels of text components.
Returns:
boundaries (List[list[float]]): The predicted boundaries of text
instances.
"""
assert text_comps.ndim == 2
assert len(text_comps) == len(comp_pred_labels)
boundaries = []
if len(text_comps) < 1:
return boundaries
for cluster_ind in range(0, int(np.max(comp_pred_labels)) + 1):
cluster_comp_inds = np.where(comp_pred_labels == cluster_ind)
text_comp_boxes = text_comps[cluster_comp_inds, :8].reshape(
(-1, 4, 2)).astype(np.int32)
score = np.mean(text_comps[cluster_comp_inds, -1])
if text_comp_boxes.shape[0] < 1:
continue
elif text_comp_boxes.shape[0] > 1:
centers = np.mean(
text_comp_boxes, axis=1).astype(np.int32).tolist()
shortest_path = min_connect_path(centers)
text_comp_boxes = text_comp_boxes[shortest_path]
top_line = np.mean(
text_comp_boxes[:, 0:2, :], axis=1).astype(np.int32).tolist()
bot_line = np.mean(
text_comp_boxes[:, 2:4, :], axis=1).astype(np.int32).tolist()
top_line, bot_line = fix_corner(top_line, bot_line,
text_comp_boxes[0],
text_comp_boxes[-1])
boundary_points = top_line + bot_line[::-1]
else:
top_line = text_comp_boxes[0, 0:2, :].astype(np.int32).tolist()
bot_line = text_comp_boxes[0, 2:4:-1, :].astype(np.int32).tolist()
boundary_points = top_line + bot_line
boundary = [p for coord in boundary_points for p in coord] + [score]
boundaries.append(boundary)
return boundaries