MMOCR / tests /test_apis /test_image_misc.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from numpy.testing import assert_array_equal
from mmocr.apis.utils import tensor2grayimgs
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
def test_tensor2grayimgs():
# test tensor obj
with pytest.raises(AssertionError):
tensor = np.random.rand(2, 3, 3)
tensor2grayimgs(tensor)
# test tensor ndim
with pytest.raises(AssertionError):
tensor = torch.randn(2, 3, 3)
tensor2grayimgs(tensor)
# test tensor dim-1
with pytest.raises(AssertionError):
tensor = torch.randn(2, 3, 5, 5)
tensor2grayimgs(tensor)
# test mean length
with pytest.raises(AssertionError):
tensor = torch.randn(2, 1, 5, 5)
tensor2grayimgs(tensor, mean=(1, 1, 1))
# test std length
with pytest.raises(AssertionError):
tensor = torch.randn(2, 1, 5, 5)
tensor2grayimgs(tensor, std=(1, 1, 1))
tensor = torch.randn(2, 1, 5, 5)
gts = [t.squeeze(0).cpu().numpy().astype(np.uint8) for t in tensor]
outputs = tensor2grayimgs(tensor, mean=(0, ), std=(1, ))
for gt, output in zip(gts, outputs):
assert_array_equal(gt, output)