MMOCR / tests /test_apis /test_model_inference.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import os
import platform
import pytest
from mmcv.image import imread
from mmocr.apis.inference import init_detector, model_inference
from mmocr.datasets import build_dataset # noqa: F401
from mmocr.models import build_detector # noqa: F401
from mmocr.utils import revert_sync_batchnorm
def build_model(config_file):
device = 'cpu'
model = init_detector(config_file, checkpoint=None, device=device)
model = revert_sync_batchnorm(model)
return model
@pytest.mark.skipif(
platform.system() == 'Windows',
reason='Win container on Github Action does not have enough RAM to run')
@pytest.mark.parametrize('cfg_file', [
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py',
'../configs/textrecog/abinet/abinet_academic.py',
'../configs/textrecog/crnn/crnn_academic_dataset.py',
'../configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py',
'../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py'
])
def test_model_inference(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
with pytest.raises(AssertionError):
model_inference(model, 1)
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg')
model_inference(model, sample_img_path)
# numpy inference
img = imread(sample_img_path)
model_inference(model, img)
@pytest.mark.skipif(
platform.system() == 'Windows',
reason='Win container on Github Action does not have enough RAM to run')
@pytest.mark.parametrize(
'cfg_file',
['../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py'])
def test_model_batch_inference_det(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg')
results = model_inference(model, [sample_img_path], batch_mode=True)
assert len(results) == 1
# numpy inference
img = imread(sample_img_path)
results = model_inference(model, [img], batch_mode=True)
assert len(results) == 1
@pytest.mark.parametrize('cfg_file', [
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py',
])
def test_model_batch_inference_raises_exception_error_aug_test_recog(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
with pytest.raises(
Exception,
match='aug test does not support inference with batch size'):
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg')
model_inference(model, [sample_img_path, sample_img_path])
with pytest.raises(
Exception,
match='aug test does not support inference with batch size'):
img = imread(sample_img_path)
model_inference(model, [img, img])
@pytest.mark.parametrize('cfg_file', [
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py',
])
def test_model_batch_inference_recog(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_recog.jpg')
results = model_inference(
model, [sample_img_path, sample_img_path], batch_mode=True)
assert len(results) == 2
# numpy inference
img = imread(sample_img_path)
results = model_inference(model, [img, img], batch_mode=True)
assert len(results) == 2
@pytest.mark.parametrize(
'cfg_file',
['../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py'])
def test_model_batch_inference_empty_detection(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
empty_detection = []
with pytest.raises(
Exception,
match='empty imgs provided, please check and try again'):
model_inference(model, empty_detection, batch_mode=True)