Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import glob | |
import os.path as osp | |
import xml.etree.ElementTree as ET | |
from functools import partial | |
import mmcv | |
import numpy as np | |
from shapely.geometry import Polygon | |
from mmocr.utils import convert_annotations, list_from_file | |
def collect_files(img_dir, gt_dir, split): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir(str): The image directory | |
gt_dir(str): The groundtruth directory | |
split(str): The split of dataset. Namely: training or test | |
Returns: | |
files(list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
# note that we handle png and jpg only. Pls convert others such as gif to | |
# jpg or png offline | |
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG'] | |
imgs_list = [] | |
for suffix in suffixes: | |
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix))) | |
files = [] | |
if split == 'training': | |
for img_file in imgs_list: | |
gt_file = gt_dir + '/' + osp.splitext( | |
osp.basename(img_file))[0] + '.xml' | |
files.append((img_file, gt_file)) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
elif split == 'test': | |
for img_file in imgs_list: | |
gt_file = gt_dir + '/000' + osp.splitext( | |
osp.basename(img_file))[0] + '.txt' | |
files.append((img_file, gt_file)) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, split, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files(list): The list of tuples (image_file, groundtruth_file) | |
split(str): The split of dataset. Namely: training or test | |
nproc(int): The number of process to collect annotations | |
Returns: | |
images(list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(split, str) | |
assert isinstance(nproc, int) | |
load_img_info_with_split = partial(load_img_info, split=split) | |
if nproc > 1: | |
images = mmcv.track_parallel_progress( | |
load_img_info_with_split, files, nproc=nproc) | |
else: | |
images = mmcv.track_progress(load_img_info_with_split, files) | |
return images | |
def load_txt_info(gt_file, img_info): | |
anno_info = [] | |
for line in list_from_file(gt_file): | |
# each line has one ploygen (n vetices), and one text. | |
# e.g., 695,885,866,888,867,1146,696,1143,####Latin 9 | |
line = line.strip() | |
strs = line.split(',') | |
category_id = 1 | |
assert strs[28][0] == '#' | |
xy = [int(x) for x in strs[0:28]] | |
assert len(xy) == 28 | |
coordinates = np.array(xy).reshape(-1, 2) | |
polygon = Polygon(coordinates) | |
iscrowd = 0 | |
area = polygon.area | |
# convert to COCO style XYWH format | |
min_x, min_y, max_x, max_y = polygon.bounds | |
bbox = [min_x, min_y, max_x - min_x, max_y - min_y] | |
text = strs[28][4:] | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=category_id, | |
bbox=bbox, | |
area=area, | |
text=text, | |
segmentation=[xy]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def load_xml_info(gt_file, img_info): | |
obj = ET.parse(gt_file) | |
anno_info = [] | |
for image in obj.getroot(): # image | |
for box in image: # image | |
h = box.attrib['height'] | |
w = box.attrib['width'] | |
x = box.attrib['left'] | |
y = box.attrib['top'] | |
text = box[0].text | |
segs = box[1].text | |
pts = segs.strip().split(',') | |
pts = [int(x) for x in pts] | |
assert len(pts) == 28 | |
# pts = [] | |
# for iter in range(2,len(box)): | |
# pts.extend([int(box[iter].attrib['x']), | |
# int(box[iter].attrib['y'])]) | |
iscrowd = 0 | |
category_id = 1 | |
bbox = [int(x), int(y), int(w), int(h)] | |
coordinates = np.array(pts).reshape(-1, 2) | |
polygon = Polygon(coordinates) | |
area = polygon.area | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=category_id, | |
bbox=bbox, | |
area=area, | |
text=text, | |
segmentation=[pts]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def load_img_info(files, split): | |
"""Load the information of one image. | |
Args: | |
files(tuple): The tuple of (img_file, groundtruth_file) | |
split(str): The split of dataset: training or test | |
Returns: | |
img_info(dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
assert isinstance(split, str) | |
img_file, gt_file = files | |
# read imgs with ignoring orientations | |
img = mmcv.imread(img_file, 'unchanged') | |
split_name = osp.basename(osp.dirname(img_file)) | |
img_info = dict( | |
# remove img_prefix for filename | |
file_name=osp.join(split_name, osp.basename(img_file)), | |
height=img.shape[0], | |
width=img.shape[1], | |
# anno_info=anno_info, | |
segm_file=osp.join(split_name, osp.basename(gt_file))) | |
if split == 'training': | |
img_info = load_xml_info(gt_file, img_info) | |
elif split == 'test': | |
img_info = load_txt_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert ctw1500 annotations to COCO format') | |
parser.add_argument('root_path', help='ctw1500 root path') | |
parser.add_argument('-o', '--out-dir', help='output path') | |
parser.add_argument( | |
'--split-list', | |
nargs='+', | |
help='a list of splits. e.g., "--split-list training test"') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
out_dir = args.out_dir if args.out_dir else root_path | |
mmcv.mkdir_or_exist(out_dir) | |
img_dir = osp.join(root_path, 'imgs') | |
gt_dir = osp.join(root_path, 'annotations') | |
set_name = {} | |
for split in args.split_list: | |
set_name.update({split: 'instances_' + split + '.json'}) | |
assert osp.exists(osp.join(img_dir, split)) | |
for split, json_name in set_name.items(): | |
print(f'Converting {split} into {json_name}') | |
with mmcv.Timer(print_tmpl='It takes {}s to convert icdar annotation'): | |
files = collect_files( | |
osp.join(img_dir, split), osp.join(gt_dir, split), split) | |
image_infos = collect_annotations(files, split, nproc=args.nproc) | |
convert_annotations(image_infos, osp.join(out_dir, json_name)) | |
if __name__ == '__main__': | |
main() | |