Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import warnings | |
from mmcv import Config | |
from mmcv.parallel import MMDataParallel | |
from mmcv.runner import get_dist_info | |
from mmdet.apis import single_gpu_test | |
from mmocr.apis.inference import disable_text_recog_aug_test | |
from mmocr.core.deployment import (ONNXRuntimeDetector, ONNXRuntimeRecognizer, | |
TensorRTDetector, TensorRTRecognizer) | |
from mmocr.datasets import build_dataloader, build_dataset | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='MMOCR test (and eval) a onnx or tensorrt model.') | |
parser.add_argument('model_config', type=str, help='Config file.') | |
parser.add_argument( | |
'model_file', type=str, help='Input file name for evaluation.') | |
parser.add_argument( | |
'model_type', | |
type=str, | |
help='Detection or recognition model to deploy.', | |
choices=['recog', 'det']) | |
parser.add_argument( | |
'backend', | |
type=str, | |
help='Which backend to test, TensorRT or ONNXRuntime.', | |
choices=['TensorRT', 'ONNXRuntime']) | |
parser.add_argument( | |
'--eval', | |
type=str, | |
nargs='+', | |
help='The evaluation metrics, which depends on the dataset, e.g.,' | |
'"bbox", "seg", "proposal" for COCO, and "mAP", "recall" for' | |
'PASCAL VOC.') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference.') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
# Following strings of text style are from colorama package | |
bright_style, reset_style = '\x1b[1m', '\x1b[0m' | |
red_text, blue_text = '\x1b[31m', '\x1b[34m' | |
white_background = '\x1b[107m' | |
msg = white_background + bright_style + red_text | |
msg += 'DeprecationWarning: This tool will be deprecated in future. ' | |
msg += blue_text + 'Welcome to use the unified model deployment toolbox ' | |
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' | |
msg += reset_style | |
warnings.warn(msg) | |
if args.device == 'cpu': | |
args.device = None | |
cfg = Config.fromfile(args.model_config) | |
# build the model | |
if args.model_type == 'det': | |
if args.backend == 'TensorRT': | |
model = TensorRTDetector(args.model_file, cfg, 0) | |
else: | |
model = ONNXRuntimeDetector(args.model_file, cfg, 0) | |
else: | |
if args.backend == 'TensorRT': | |
model = TensorRTRecognizer(args.model_file, cfg, 0) | |
else: | |
model = ONNXRuntimeRecognizer(args.model_file, cfg, 0) | |
# build the dataloader | |
samples_per_gpu = 1 | |
cfg = disable_text_recog_aug_test(cfg) | |
dataset = build_dataset(cfg.data.test) | |
data_loader = build_dataloader( | |
dataset, | |
samples_per_gpu=samples_per_gpu, | |
workers_per_gpu=cfg.data.workers_per_gpu, | |
dist=False, | |
shuffle=False) | |
model = MMDataParallel(model, device_ids=[0]) | |
outputs = single_gpu_test(model, data_loader) | |
rank, _ = get_dist_info() | |
if rank == 0: | |
kwargs = {} | |
if args.eval: | |
eval_kwargs = cfg.get('evaluation', {}).copy() | |
# hard-code way to remove EvalHook args | |
for key in [ | |
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', | |
'rule' | |
]: | |
eval_kwargs.pop(key, None) | |
eval_kwargs.update(dict(metric=args.eval, **kwargs)) | |
print(dataset.evaluate(outputs, **eval_kwargs)) | |
if __name__ == '__main__': | |
main() | |