img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # for icdar2015 leval_prop_range_icdar2015 = ((0, 0.4), (0.3, 0.7), (0.6, 1.0)) train_pipeline_icdar2015 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadTextAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='ColorJitter', brightness=32.0 / 255, saturation=0.5, contrast=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='RandomScaling', size=800, scale=(3. / 4, 5. / 2)), dict( type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2), dict( type='RandomCropPolyInstances', instance_key='gt_masks', crop_ratio=0.8, min_side_ratio=0.3), dict( type='RandomRotatePolyInstances', rotate_ratio=0.5, max_angle=30, pad_with_fixed_color=False), dict(type='SquareResizePad', target_size=800, pad_ratio=0.6), dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'), dict(type='Pad', size_divisor=32), dict( type='FCENetTargets', fourier_degree=5, level_proportion_range=leval_prop_range_icdar2015), dict( type='CustomFormatBundle', keys=['p3_maps', 'p4_maps', 'p5_maps'], visualize=dict(flag=False, boundary_key=None)), dict(type='Collect', keys=['img', 'p3_maps', 'p4_maps', 'p5_maps']) ] img_scale_icdar2015 = (2260, 2260) test_pipeline_icdar2015 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='MultiScaleFlipAug', img_scale=img_scale_icdar2015, flip=False, transforms=[ dict(type='Resize', img_scale=(1280, 800), keep_ratio=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] # for ctw1500 leval_prop_range_ctw1500 = ((0, 0.25), (0.2, 0.65), (0.55, 1.0)) train_pipeline_ctw1500 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadTextAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='ColorJitter', brightness=32.0 / 255, saturation=0.5, contrast=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='RandomScaling', size=800, scale=(3. / 4, 5. / 2)), dict( type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2), dict( type='RandomCropPolyInstances', instance_key='gt_masks', crop_ratio=0.8, min_side_ratio=0.3), dict( type='RandomRotatePolyInstances', rotate_ratio=0.5, max_angle=30, pad_with_fixed_color=False), dict(type='SquareResizePad', target_size=800, pad_ratio=0.6), dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'), dict(type='Pad', size_divisor=32), dict( type='FCENetTargets', fourier_degree=5, level_proportion_range=leval_prop_range_ctw1500), dict( type='CustomFormatBundle', keys=['p3_maps', 'p4_maps', 'p5_maps'], visualize=dict(flag=False, boundary_key=None)), dict(type='Collect', keys=['img', 'p3_maps', 'p4_maps', 'p5_maps']) ] img_scale_ctw1500 = (1080, 736) test_pipeline_ctw1500 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='MultiScaleFlipAug', img_scale=img_scale_ctw1500, flip=False, transforms=[ dict(type='Resize', img_scale=(1280, 800), keep_ratio=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ]