_base_ = ['../../_base_/default_runtime.py'] model = dict( type='SDMGR', backbone=dict(type='UNet', base_channels=16), bbox_head=dict( type='SDMGRHead', visual_dim=16, num_chars=92, num_classes=4), visual_modality=False, train_cfg=None, test_cfg=None, class_list=None, openset=True) optimizer = dict(type='Adam', weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=1, warmup_ratio=1, step=[40, 50]) total_epochs = 60 train_pipeline = [ dict(type='LoadAnnotations'), dict(type='ResizeNoImg', img_scale=(1024, 512), keep_ratio=True), dict(type='KIEFormatBundle'), dict( type='Collect', keys=['img', 'relations', 'texts', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_filename', 'ori_texts')) ] test_pipeline = [ dict(type='LoadAnnotations'), dict(type='ResizeNoImg', img_scale=(1024, 512), keep_ratio=True), dict(type='KIEFormatBundle'), dict( type='Collect', keys=['img', 'relations', 'texts', 'gt_bboxes'], meta_keys=('filename', 'ori_filename', 'ori_texts', 'ori_boxes', 'img_norm_cfg', 'ori_filename', 'img_shape')) ] dataset_type = 'OpensetKIEDataset' data_root = 'data/wildreceipt' loader = dict( type='HardDiskLoader', repeat=1, parser=dict( type='LineJsonParser', keys=['file_name', 'height', 'width', 'annotations'])) train = dict( type=dataset_type, ann_file=f'{data_root}/openset_train.txt', pipeline=train_pipeline, img_prefix=data_root, link_type='one-to-many', loader=loader, dict_file=f'{data_root}/dict.txt', test_mode=False) test = dict( type=dataset_type, ann_file=f'{data_root}/openset_test.txt', pipeline=test_pipeline, img_prefix=data_root, link_type='one-to-many', loader=loader, dict_file=f'{data_root}/dict.txt', test_mode=True) data = dict( samples_per_gpu=4, workers_per_gpu=1, val_dataloader=dict(samples_per_gpu=1), test_dataloader=dict(samples_per_gpu=1), train=train, val=test, test=test) evaluation = dict(interval=1, metric='openset_f1', metric_options=None) find_unused_parameters = True