# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn.functional as F from mmcv.cnn import ConvModule from mmcv.runner import BaseModule, ModuleList from mmocr.models.builder import NECKS @NECKS.register_module() class FPNOCR(BaseModule): """FPN-like Network for segmentation based text recognition. Args: in_channels (list[int]): Number of input channels :math:`C_i` for each scale. out_channels (int): Number of output channels :math:`C_{out}` for each scale. last_stage_only (bool): If True, output last stage only. init_cfg (dict or list[dict], optional): Initialization configs. """ def __init__(self, in_channels, out_channels, last_stage_only=True, init_cfg=None): super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.last_stage_only = last_stage_only self.lateral_convs = ModuleList() self.smooth_convs_1x1 = ModuleList() self.smooth_convs_3x3 = ModuleList() for i in range(self.num_ins): l_conv = ConvModule( in_channels[i], out_channels, 1, norm_cfg=dict(type='BN')) self.lateral_convs.append(l_conv) for i in range(self.num_ins - 1): s_conv_1x1 = ConvModule( out_channels * 2, out_channels, 1, norm_cfg=dict(type='BN')) s_conv_3x3 = ConvModule( out_channels, out_channels, 3, padding=1, norm_cfg=dict(type='BN')) self.smooth_convs_1x1.append(s_conv_1x1) self.smooth_convs_3x3.append(s_conv_3x3) def _upsample_x2(self, x): return F.interpolate(x, scale_factor=2, mode='bilinear') def forward(self, inputs): """ Args: inputs (list[Tensor]): A list of n tensors. Each tensor has the shape of :math:`(N, C_i, H_i, W_i)`. It usually expects 4 tensors (C2-C5 features) from ResNet. Returns: tuple(Tensor): A tuple of n-1 tensors. Each has the of shape :math:`(N, C_{out}, H_{n-2-i}, W_{n-2-i})`. If ``last_stage_only=True`` (default), the size of the tuple is 1 and only the last element will be returned. """ lateral_features = [ l_conv(inputs[i]) for i, l_conv in enumerate(self.lateral_convs) ] outs = [] for i in range(len(self.smooth_convs_3x3), 0, -1): # 3, 2, 1 last_out = lateral_features[-1] if len(outs) == 0 else outs[-1] upsample = self._upsample_x2(last_out) upsample_cat = torch.cat((upsample, lateral_features[i - 1]), dim=1) smooth_1x1 = self.smooth_convs_1x1[i - 1](upsample_cat) smooth_3x3 = self.smooth_convs_3x3[i - 1](smooth_1x1) outs.append(smooth_3x3) return tuple(outs[-1:]) if self.last_stage_only else tuple(outs)