# Text Recognition Training set, including: # Synthetic Datasets: SynthText, Syn90k train_root = 'data/mixture' train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px' train_ann_file1 = f'{train_root}/Syn90k/label.lmdb' train1 = dict( type='OCRDataset', img_prefix=train_img_prefix1, ann_file=train_ann_file1, loader=dict( type='LmdbLoader', repeat=1, parser=dict( type='LineStrParser', keys=['filename', 'text'], keys_idx=[0, 1], separator=' ')), pipeline=None, test_mode=False) train_img_prefix2 = f'{train_root}/SynthText/' + \ 'synthtext/SynthText_patch_horizontal' train_ann_file2 = f'{train_root}/SynthText/label.lmdb' train2 = {key: value for key, value in train1.items()} train2['img_prefix'] = train_img_prefix2 train2['ann_file'] = train_ann_file2 train_list = [train1, train2]