File size: 15,089 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python3
import numpy as np
import torch
import cv2
import pyclipper
from shapely.geometry import Polygon

from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist, cat_boxlist_gt
from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
import random

import time


class SEGPostProcessor(torch.nn.Module):
    """
    Performs post-processing on the outputs of the RPN boxes, before feeding the
    proposals to the heads
    """

    def __init__(
        self,
        top_n,
        binary_thresh,
        box_thresh,
        min_size,
        cfg,
    ):
        """
        Arguments:
            top_n (int)
            binary_thresh (float)
            box_thresh (float)
            min_size (int)
        """
        super(SEGPostProcessor, self).__init__()
        self.top_n = top_n
        self.binary_thresh = binary_thresh
        self.box_thresh = box_thresh
        self.min_size = min_size
        self.cfg = cfg

    def add_gt_proposals(self, proposals, targets):
        """
        Arguments:
            proposals: list[BoxList]
            targets: list[BoxList]
        """
        # Get the device we're operating on
        # device = proposals[0].bbox.
        if self.cfg.MODEL.SEG.USE_SEG_POLY or self.cfg.MODEL.ROI_BOX_HEAD.USE_MASKED_FEATURE or self.cfg.MODEL.ROI_MASK_HEAD.USE_MASKED_FEATURE:
            gt_boxes = [target.copy_with_fields(['masks']) for target in targets]
        else:
            gt_boxes = [target.copy_with_fields([]) for target in targets]
        # later cat of bbox requires all fields to be present for all bbox
        # so we need to add a dummy for objectness that's missing
        # for gt_box in gt_boxes:
        #     gt_box.add_field("objectness", torch.ones(len(gt_box), device=device))
        proposals = [
            cat_boxlist_gt([proposal, gt_box])
            for proposal, gt_box in zip(proposals, gt_boxes)
        ]

        return proposals

    def aug_tensor_proposals(self, boxes):
        # boxes: N * 4
        boxes = boxes.float()
        N = boxes.shape[0]
        device = boxes.device
        aug_boxes = torch.zeros((4, N, 4), device=device)
        aug_boxes[0, :, :] = boxes.clone()
        xmin, ymin, xmax, ymax = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
        x_center = (xmin + xmax) / 2.
        y_center = (ymin + ymax) / 2.
        width = xmax - xmin
        height = ymax - ymin
        for i in range(3):
            choice = random.random()
            if choice < 0.5:
                # shrink or expand
                ratio = (torch.randn((N,), device=device) * 3 + 1) / 2.
                height = height * ratio
                ratio = (torch.randn((N,), device=device) * 3 + 1) / 2.
                width = width * ratio
            else:
                move_x = width * (torch.randn((N,), device=device) * 4 - 2)
                move_y = height * (torch.randn((N,), device=device) * 4 - 2)
                x_center += move_x
                y_center += move_y
            boxes[:, 0] = x_center - width / 2
            boxes[:, 2] = x_center + width / 2
            boxes[:, 1] = y_center - height / 2
            boxes[:, 3] = y_center + height / 2
            aug_boxes[i+1, :, :] = boxes.clone()
        return aug_boxes.reshape((-1, 4))

    def forward_for_single_feature_map(self, pred, image_shapes):
        """
        Arguments:
            pred: tensor of size N, 1, H, W
        """
        device = pred.device
        # torch.cuda.synchronize()
        # start_time = time.time()
        bitmap = self.binarize(pred)
        # torch.cuda.synchronize()
        # end_time = time.time()
        # print('binarize time:', end_time - start_time)
        N, height, width = pred.shape[0], pred.shape[2], pred.shape[3]
        # torch.cuda.synchronize()
        # start_time = time.time()
        bitmap_numpy = bitmap.cpu().numpy()  # The first channel
        pred_map_numpy = pred.cpu().numpy()
        # torch.cuda.synchronize()
        # end_time = time.time()
        # print('gpu2numpy time:', end_time - start_time)
        boxes_batch = []
        rotated_boxes_batch = []
        polygons_batch = []
        scores_batch = []
        # torch.cuda.synchronize()
        # start_time = time.time()
        for batch_index in range(N):
            image_shape = image_shapes[batch_index]
            boxes, scores, rotated_boxes, polygons = self.boxes_from_bitmap(
                pred_map_numpy[batch_index],
                bitmap_numpy[batch_index], width, height)
            boxes = boxes.to(device)
            if self.training and self.cfg.MODEL.SEG.AUG_PROPOSALS:
                boxes = self.aug_tensor_proposals(boxes)
            if boxes.shape[0] > self.top_n:
                boxes = boxes[:self.top_n, :]
                # _, top_index = scores.topk(self.top_n, 0, sorted=False)
                # boxes = boxes[top_index, :]
                # scores = scores[top_index]
            # boxlist = BoxList(boxes, (width, height), mode="xyxy")
            boxlist = BoxList(boxes, (image_shape[1], image_shape[0]), mode="xyxy")
            if self.cfg.MODEL.SEG.USE_SEG_POLY or self.cfg.MODEL.ROI_BOX_HEAD.USE_MASKED_FEATURE or self.cfg.MODEL.ROI_MASK_HEAD.USE_MASKED_FEATURE:
                masks = SegmentationMask(polygons, (image_shape[1], image_shape[0]))
                boxlist.add_field('masks', masks)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            # boxlist = remove_small_boxes(boxlist, self.min_size)
            boxes_batch.append(boxlist)
            rotated_boxes_batch.append(rotated_boxes)
            polygons_batch.append(polygons)
            scores_batch.append(scores)
        # torch.cuda.synchronize()
        # end_time = time.time()
        # print('loop time:', end_time - start_time)
        return boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch

    def forward(self, seg_output, image_shapes, targets=None):
        """
        Arguments:
            seg_output: list[tensor]

        Returns:
            boxlists (list[BoxList]): bounding boxes
        """
        sampled_boxes = []
        boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch = self.forward_for_single_feature_map(seg_output, image_shapes)
        if not self.training:
            return boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch
        sampled_boxes.append(boxes_batch)

        boxlists = list(zip(*sampled_boxes))
        boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]

        # append ground-truth bboxes to proposals
        if self.training and targets is not None:
            boxlists = self.add_gt_proposals(boxlists, targets)
        return boxlists

    # def select_over_all_levels(self, boxlists):
    #     num_images = len(boxlists)
    #     # different behavior during training and during testing:
    #     # during training, post_nms_top_n is over *all* the proposals combined, while
    #     # during testing, it is over the proposals for each image
    #     # TODO resolve this difference and make it consistent. It should be per image,
    #     # and not per batch
    #     if self.training:
    #         objectness = torch.cat(
    #             [boxlist.get_field("objectness") for boxlist in boxlists], dim=0
    #         )
    #         box_sizes = [len(boxlist) for boxlist in boxlists]
    #         post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
    #         _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
    #         inds_mask = torch.zeros_like(objectness, dtype=torch.uint8)
    #         inds_mask[inds_sorted] = 1
    #         inds_mask = inds_mask.split(box_sizes)
    #         for i in range(num_images):
    #             boxlists[i] = boxlists[i][inds_mask[i]]
    #     else:
    #         for i in range(num_images):
    #             objectness = boxlists[i].get_field("objectness")
    #             post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
    #             _, inds_sorted = torch.topk(
    #                 objectness, post_nms_top_n, dim=0, sorted=True
    #             )
    #             boxlists[i] = boxlists[i][inds_sorted]
    #     return boxlists

    def binarize(self, pred):
        if self.cfg.MODEL.SEG.USE_MULTIPLE_THRESH:
            binary_maps = []
            for thre in self.cfg.MODEL.SEG.MULTIPLE_THRESH:
                binary_map = pred > thre
                binary_maps.append(binary_map)
            return torch.cat(binary_maps, dim=1)
        else:
            return pred > self.binary_thresh

    def boxes_from_bitmap(self, pred, bitmap, dest_width, dest_height):
        """
        _bitmap: single map with shape (1, H, W),
            whose values are binarized as {0, 1}
        """
        # assert _bitmap.size(0) == 1
        # bitmap = _bitmap[0]  # The first channel
        pred = pred[0]
        height, width = bitmap.shape[1], bitmap.shape[2]
        boxes = []
        scores = []
        rotated_boxes = []
        polygons = []
        contours_all = []
        for i in range(bitmap.shape[0]):
            try:
                _, contours, _ = cv2.findContours(
                    (bitmap[i] * 255).astype(np.uint8),
                    cv2.RETR_LIST,
                    cv2.CHAIN_APPROX_NONE,
                )
            except BaseException:
                contours, _ = cv2.findContours(
                    (bitmap[i] * 255).astype(np.uint8),
                    cv2.RETR_LIST,
                    cv2.CHAIN_APPROX_NONE,
                )
            contours_all.extend(contours)
        for contour in contours_all:
            epsilon = 0.01 * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            polygon = approx.reshape((-1, 2))
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, points)
            if not self.training and self.box_thresh > score:
                continue
            if polygon.shape[0] > 2:
                polygon = self.unclip(polygon, expand_ratio=self.cfg.MODEL.SEG.EXPAND_RATIO)
                if len(polygon) > 1:
                    continue
            else:
                continue
            # polygon = polygon.reshape(-1, 2)
            polygon = polygon.reshape(-1)
            box = self.unclip(points, expand_ratio=self.cfg.MODEL.SEG.BOX_EXPAND_RATIO).reshape(-1, 2)
            box = np.array(box)
            box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height
            )
            min_x, min_y = min(box[:, 0]), min(box[:, 1])
            max_x, max_y = max(box[:, 0]), max(box[:, 1])
            horizontal_box = torch.from_numpy(np.array([min_x, min_y, max_x, max_y]))
            boxes.append(horizontal_box)
            scores.append(score)
            rotated_box, _ = self.get_mini_boxes(box.reshape(-1, 1, 2))
            rotated_box = np.array(rotated_box)
            rotated_boxes.append(rotated_box)
            polygons.append([polygon])
        if len(boxes) == 0:
            boxes = [torch.from_numpy(np.array([0, 0, 0, 0]))]
            scores = [0.]

        boxes = torch.stack(boxes)
        scores = torch.from_numpy(np.array(scores))
        return boxes, scores, rotated_boxes, polygons

    def aug_proposals(self, box):
        xmin, ymin, xmax, ymax = box[0], box[1], box[2], box[3]
        x_center = int((xmin + xmax) / 2.)
        y_center = int((ymin + ymax) / 2.)
        width = xmax - xmin
        height = ymax - ymin
        choice = random.random()
        if choice < 0.5:
            # shrink or expand
            ratio = (random.random() * 3 + 1) / 2.
            height = height * ratio
            ratio = (random.random() * 3 + 1) / 2.
            width = width * ratio
        else:
            move_x = width * (random.random() * 4 - 2)
            move_y = height * (random.random() * 4 - 2)
            x_center += move_x
            y_center += move_y
        xmin = int(x_center - width / 2)
        xmax = int(x_center + width / 2)
        ymin = int(y_center - height / 2)
        ymax = int(y_center + height / 2)
        return [xmin, ymin, xmax, ymax]

    def unclip(self, box, expand_ratio=1.5):
        poly = Polygon(box)
        distance = poly.area * expand_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [points[index_1], points[index_2], points[index_3], points[index_4]]
        return box, min(bounding_box[1])

    def box_score(self, bitmap, box):
        """
        naive version of box score computation,
        only for helping principle understand.
        """
        mask = np.zeros_like(bitmap, dtype=np.uint8)
        cv2.fillPoly(mask, box.reshape(1, 4, 2).astype(np.int32), 1)
        return cv2.mean(bitmap, mask)[0]

    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, 4, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin : ymax + 1, xmin : xmax + 1], mask)[0]


def make_seg_postprocessor(config, is_train):
    top_n = config.MODEL.SEG.TOP_N_TRAIN
    if not is_train:
        top_n = config.MODEL.SEG.TOP_N_TEST

    binary_thresh = config.MODEL.SEG.BINARY_THRESH
    box_thresh = config.MODEL.SEG.BOX_THRESH
    min_size = config.MODEL.SEG.MIN_SIZE
    box_selector = SEGPostProcessor(
        top_n=top_n,
        binary_thresh=binary_thresh,
        box_thresh=box_thresh,
        min_size=min_size,
        cfg = config
    )
    return box_selector