Spaces:
Runtime error
Runtime error
File size: 15,089 Bytes
c310e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
#!/usr/bin/env python3
import numpy as np
import torch
import cv2
import pyclipper
from shapely.geometry import Polygon
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist, cat_boxlist_gt
from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
import random
import time
class SEGPostProcessor(torch.nn.Module):
"""
Performs post-processing on the outputs of the RPN boxes, before feeding the
proposals to the heads
"""
def __init__(
self,
top_n,
binary_thresh,
box_thresh,
min_size,
cfg,
):
"""
Arguments:
top_n (int)
binary_thresh (float)
box_thresh (float)
min_size (int)
"""
super(SEGPostProcessor, self).__init__()
self.top_n = top_n
self.binary_thresh = binary_thresh
self.box_thresh = box_thresh
self.min_size = min_size
self.cfg = cfg
def add_gt_proposals(self, proposals, targets):
"""
Arguments:
proposals: list[BoxList]
targets: list[BoxList]
"""
# Get the device we're operating on
# device = proposals[0].bbox.
if self.cfg.MODEL.SEG.USE_SEG_POLY or self.cfg.MODEL.ROI_BOX_HEAD.USE_MASKED_FEATURE or self.cfg.MODEL.ROI_MASK_HEAD.USE_MASKED_FEATURE:
gt_boxes = [target.copy_with_fields(['masks']) for target in targets]
else:
gt_boxes = [target.copy_with_fields([]) for target in targets]
# later cat of bbox requires all fields to be present for all bbox
# so we need to add a dummy for objectness that's missing
# for gt_box in gt_boxes:
# gt_box.add_field("objectness", torch.ones(len(gt_box), device=device))
proposals = [
cat_boxlist_gt([proposal, gt_box])
for proposal, gt_box in zip(proposals, gt_boxes)
]
return proposals
def aug_tensor_proposals(self, boxes):
# boxes: N * 4
boxes = boxes.float()
N = boxes.shape[0]
device = boxes.device
aug_boxes = torch.zeros((4, N, 4), device=device)
aug_boxes[0, :, :] = boxes.clone()
xmin, ymin, xmax, ymax = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
x_center = (xmin + xmax) / 2.
y_center = (ymin + ymax) / 2.
width = xmax - xmin
height = ymax - ymin
for i in range(3):
choice = random.random()
if choice < 0.5:
# shrink or expand
ratio = (torch.randn((N,), device=device) * 3 + 1) / 2.
height = height * ratio
ratio = (torch.randn((N,), device=device) * 3 + 1) / 2.
width = width * ratio
else:
move_x = width * (torch.randn((N,), device=device) * 4 - 2)
move_y = height * (torch.randn((N,), device=device) * 4 - 2)
x_center += move_x
y_center += move_y
boxes[:, 0] = x_center - width / 2
boxes[:, 2] = x_center + width / 2
boxes[:, 1] = y_center - height / 2
boxes[:, 3] = y_center + height / 2
aug_boxes[i+1, :, :] = boxes.clone()
return aug_boxes.reshape((-1, 4))
def forward_for_single_feature_map(self, pred, image_shapes):
"""
Arguments:
pred: tensor of size N, 1, H, W
"""
device = pred.device
# torch.cuda.synchronize()
# start_time = time.time()
bitmap = self.binarize(pred)
# torch.cuda.synchronize()
# end_time = time.time()
# print('binarize time:', end_time - start_time)
N, height, width = pred.shape[0], pred.shape[2], pred.shape[3]
# torch.cuda.synchronize()
# start_time = time.time()
bitmap_numpy = bitmap.cpu().numpy() # The first channel
pred_map_numpy = pred.cpu().numpy()
# torch.cuda.synchronize()
# end_time = time.time()
# print('gpu2numpy time:', end_time - start_time)
boxes_batch = []
rotated_boxes_batch = []
polygons_batch = []
scores_batch = []
# torch.cuda.synchronize()
# start_time = time.time()
for batch_index in range(N):
image_shape = image_shapes[batch_index]
boxes, scores, rotated_boxes, polygons = self.boxes_from_bitmap(
pred_map_numpy[batch_index],
bitmap_numpy[batch_index], width, height)
boxes = boxes.to(device)
if self.training and self.cfg.MODEL.SEG.AUG_PROPOSALS:
boxes = self.aug_tensor_proposals(boxes)
if boxes.shape[0] > self.top_n:
boxes = boxes[:self.top_n, :]
# _, top_index = scores.topk(self.top_n, 0, sorted=False)
# boxes = boxes[top_index, :]
# scores = scores[top_index]
# boxlist = BoxList(boxes, (width, height), mode="xyxy")
boxlist = BoxList(boxes, (image_shape[1], image_shape[0]), mode="xyxy")
if self.cfg.MODEL.SEG.USE_SEG_POLY or self.cfg.MODEL.ROI_BOX_HEAD.USE_MASKED_FEATURE or self.cfg.MODEL.ROI_MASK_HEAD.USE_MASKED_FEATURE:
masks = SegmentationMask(polygons, (image_shape[1], image_shape[0]))
boxlist.add_field('masks', masks)
boxlist = boxlist.clip_to_image(remove_empty=False)
# boxlist = remove_small_boxes(boxlist, self.min_size)
boxes_batch.append(boxlist)
rotated_boxes_batch.append(rotated_boxes)
polygons_batch.append(polygons)
scores_batch.append(scores)
# torch.cuda.synchronize()
# end_time = time.time()
# print('loop time:', end_time - start_time)
return boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch
def forward(self, seg_output, image_shapes, targets=None):
"""
Arguments:
seg_output: list[tensor]
Returns:
boxlists (list[BoxList]): bounding boxes
"""
sampled_boxes = []
boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch = self.forward_for_single_feature_map(seg_output, image_shapes)
if not self.training:
return boxes_batch, rotated_boxes_batch, polygons_batch, scores_batch
sampled_boxes.append(boxes_batch)
boxlists = list(zip(*sampled_boxes))
boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
# append ground-truth bboxes to proposals
if self.training and targets is not None:
boxlists = self.add_gt_proposals(boxlists, targets)
return boxlists
# def select_over_all_levels(self, boxlists):
# num_images = len(boxlists)
# # different behavior during training and during testing:
# # during training, post_nms_top_n is over *all* the proposals combined, while
# # during testing, it is over the proposals for each image
# # TODO resolve this difference and make it consistent. It should be per image,
# # and not per batch
# if self.training:
# objectness = torch.cat(
# [boxlist.get_field("objectness") for boxlist in boxlists], dim=0
# )
# box_sizes = [len(boxlist) for boxlist in boxlists]
# post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
# _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
# inds_mask = torch.zeros_like(objectness, dtype=torch.uint8)
# inds_mask[inds_sorted] = 1
# inds_mask = inds_mask.split(box_sizes)
# for i in range(num_images):
# boxlists[i] = boxlists[i][inds_mask[i]]
# else:
# for i in range(num_images):
# objectness = boxlists[i].get_field("objectness")
# post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
# _, inds_sorted = torch.topk(
# objectness, post_nms_top_n, dim=0, sorted=True
# )
# boxlists[i] = boxlists[i][inds_sorted]
# return boxlists
def binarize(self, pred):
if self.cfg.MODEL.SEG.USE_MULTIPLE_THRESH:
binary_maps = []
for thre in self.cfg.MODEL.SEG.MULTIPLE_THRESH:
binary_map = pred > thre
binary_maps.append(binary_map)
return torch.cat(binary_maps, dim=1)
else:
return pred > self.binary_thresh
def boxes_from_bitmap(self, pred, bitmap, dest_width, dest_height):
"""
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
"""
# assert _bitmap.size(0) == 1
# bitmap = _bitmap[0] # The first channel
pred = pred[0]
height, width = bitmap.shape[1], bitmap.shape[2]
boxes = []
scores = []
rotated_boxes = []
polygons = []
contours_all = []
for i in range(bitmap.shape[0]):
try:
_, contours, _ = cv2.findContours(
(bitmap[i] * 255).astype(np.uint8),
cv2.RETR_LIST,
cv2.CHAIN_APPROX_NONE,
)
except BaseException:
contours, _ = cv2.findContours(
(bitmap[i] * 255).astype(np.uint8),
cv2.RETR_LIST,
cv2.CHAIN_APPROX_NONE,
)
contours_all.extend(contours)
for contour in contours_all:
epsilon = 0.01 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
polygon = approx.reshape((-1, 2))
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
score = self.box_score_fast(pred, points)
if not self.training and self.box_thresh > score:
continue
if polygon.shape[0] > 2:
polygon = self.unclip(polygon, expand_ratio=self.cfg.MODEL.SEG.EXPAND_RATIO)
if len(polygon) > 1:
continue
else:
continue
# polygon = polygon.reshape(-1, 2)
polygon = polygon.reshape(-1)
box = self.unclip(points, expand_ratio=self.cfg.MODEL.SEG.BOX_EXPAND_RATIO).reshape(-1, 2)
box = np.array(box)
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height
)
min_x, min_y = min(box[:, 0]), min(box[:, 1])
max_x, max_y = max(box[:, 0]), max(box[:, 1])
horizontal_box = torch.from_numpy(np.array([min_x, min_y, max_x, max_y]))
boxes.append(horizontal_box)
scores.append(score)
rotated_box, _ = self.get_mini_boxes(box.reshape(-1, 1, 2))
rotated_box = np.array(rotated_box)
rotated_boxes.append(rotated_box)
polygons.append([polygon])
if len(boxes) == 0:
boxes = [torch.from_numpy(np.array([0, 0, 0, 0]))]
scores = [0.]
boxes = torch.stack(boxes)
scores = torch.from_numpy(np.array(scores))
return boxes, scores, rotated_boxes, polygons
def aug_proposals(self, box):
xmin, ymin, xmax, ymax = box[0], box[1], box[2], box[3]
x_center = int((xmin + xmax) / 2.)
y_center = int((ymin + ymax) / 2.)
width = xmax - xmin
height = ymax - ymin
choice = random.random()
if choice < 0.5:
# shrink or expand
ratio = (random.random() * 3 + 1) / 2.
height = height * ratio
ratio = (random.random() * 3 + 1) / 2.
width = width * ratio
else:
move_x = width * (random.random() * 4 - 2)
move_y = height * (random.random() * 4 - 2)
x_center += move_x
y_center += move_y
xmin = int(x_center - width / 2)
xmax = int(x_center + width / 2)
ymin = int(y_center - height / 2)
ymax = int(y_center + height / 2)
return [xmin, ymin, xmax, ymax]
def unclip(self, box, expand_ratio=1.5):
poly = Polygon(box)
distance = poly.area * expand_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
return box, min(bounding_box[1])
def box_score(self, bitmap, box):
"""
naive version of box score computation,
only for helping principle understand.
"""
mask = np.zeros_like(bitmap, dtype=np.uint8)
cv2.fillPoly(mask, box.reshape(1, 4, 2).astype(np.int32), 1)
return cv2.mean(bitmap, mask)[0]
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, 4, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin : ymax + 1, xmin : xmax + 1], mask)[0]
def make_seg_postprocessor(config, is_train):
top_n = config.MODEL.SEG.TOP_N_TRAIN
if not is_train:
top_n = config.MODEL.SEG.TOP_N_TEST
binary_thresh = config.MODEL.SEG.BINARY_THRESH
box_thresh = config.MODEL.SEG.BOX_THRESH
min_size = config.MODEL.SEG.MIN_SIZE
box_selector = SEGPostProcessor(
top_n=top_n,
binary_thresh=binary_thresh,
box_thresh=box_thresh,
min_size=min_size,
cfg = config
)
return box_selector
|