3v324v23's picture
add
c310e19
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import os
from yacs.config import CfgNode as CN
# -----------------------------------------------------------------------------
# Convention about Training / Test specific parameters
# -----------------------------------------------------------------------------
# Whenever an argument can be either used for training or for testing, the
# corresponding name will be post-fixed by a _TRAIN for a training parameter,
# or _TEST for a test-specific parameter.
# For example, the number of images during training will be
# IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be
# IMAGES_PER_BATCH_TEST
# -----------------------------------------------------------------------------
# Config definition
# -----------------------------------------------------------------------------
_C = CN()
_C.MODEL = CN()
_C.MODEL.RPN_ONLY = False
_C.MODEL.MASK_ON = False
_C.MODEL.SEG_ON = False
_C.MODEL.CHAR_MASK_ON = False
_C.MODEL.DEVICE = "cuda"
_C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN"
_C.MODEL.TRAIN_DETECTION_ONLY = False
_C.MODEL.RESNET34 = False
# If the WEIGHT starts with a catalog://, like :R-50, the code will look for
# the path in paths_catalog. Else, it will use it as the specified absolute
# path
_C.MODEL.WEIGHT = ""
_C.SEQUENCE = CN()
_C.SEQUENCE.SEQ_ON = False
_C.SEQUENCE.NUM_CHAR = 38
_C.SEQUENCE.BOS_TOKEN = 0
_C.SEQUENCE.MAX_LENGTH = 32
_C.SEQUENCE.TEACHER_FORCE_RATIO = 1.0
_C.SEQUENCE.TWO_CONV = False
_C.SEQUENCE.MEAN_SCORE = False
_C.SEQUENCE.RESIZE_HEIGHT = 16
_C.SEQUENCE.RESIZE_WIDTH = 64
# -----------------------------------------------------------------------------
# INPUT
# -----------------------------------------------------------------------------
_C.INPUT = CN()
# Size of the smallest side of the image during training
_C.INPUT.MIN_SIZE_TRAIN = (800,) # (800,)
# Maximum size of the side of the image during training
_C.INPUT.MAX_SIZE_TRAIN = 1333
# Size of the smallest side of the image during testing
_C.INPUT.MIN_SIZE_TEST = 800
# Maximum size of the side of the image during testing
_C.INPUT.MAX_SIZE_TEST = 1333
# Values to be used for image normalization
_C.INPUT.PIXEL_MEAN = [102.9801, 115.9465, 122.7717]
# Values to be used for image normalization
_C.INPUT.PIXEL_STD = [1.0, 1.0, 1.0]
# Convert image to BGR format (for Caffe2 models), in range 0-255
_C.INPUT.TO_BGR255 = True
_C.INPUT.STRICT_RESIZE = False
# -----------------------------------------------------------------------------
# Dataset
# -----------------------------------------------------------------------------
_C.DATASETS = CN()
# List of the dataset names for training, as present in paths_catalog.py
_C.DATASETS.TRAIN = ()
# List of the dataset names for testing, as present in paths_catalog.py
_C.DATASETS.TEST = ()
_C.DATASETS.RATIOS = []
_C.DATASETS.AUG = False
_C.DATASETS.RANDOM_CROP_PROB = 0.0
_C.DATASETS.IGNORE_DIFFICULT = False
_C.DATASETS.FIX_CROP = False
_C.DATASETS.CROP_SIZE = (512, 512)
_C.DATASETS.MAX_ROTATE_THETA = 30
_C.DATASETS.FIX_ROTATE = False
# -----------------------------------------------------------------------------
# DataLoader
# -----------------------------------------------------------------------------
_C.DATALOADER = CN()
# Number of data loading threads
_C.DATALOADER.NUM_WORKERS = 4
# If > 0, this enforces that each collated batch should have a size divisible
# by SIZE_DIVISIBILITY
_C.DATALOADER.SIZE_DIVISIBILITY = 0
# If True, each batch should contain only images for which the aspect ratio
# is compatible. This groups portrait images together, and landscape images
# are not batched with portrait images.
_C.DATALOADER.ASPECT_RATIO_GROUPING = True
# ---------------------------------------------------------------------------- #
# Backbone options
# ---------------------------------------------------------------------------- #
_C.MODEL.BACKBONE = CN()
# The backbone conv body to use
# The string must match a function that is imported in modeling.model_builder
# (e.g., 'FPN.add_fpn_ResNet101_conv5_body' to specify a ResNet-101-FPN
# backbone)
_C.MODEL.BACKBONE.CONV_BODY = "R-50-C4"
# Add StopGrad at a specified stage so the bottom layers are frozen
_C.MODEL.BACKBONE.FREEZE_CONV_BODY_AT = 2
_C.MODEL.BACKBONE.OUT_CHANNELS = 256 * 4
# ---------------------------------------------------------------------------- #
# ResNe[X]t options (ResNets = {ResNet, ResNeXt}
# Note that parts of a resnet may be used for both the backbone and the head
# These options apply to both
# ---------------------------------------------------------------------------- #
_C.MODEL.RESNETS = CN()
# Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt
_C.MODEL.RESNETS.NUM_GROUPS = 1
# Baseline width of each group
_C.MODEL.RESNETS.WIDTH_PER_GROUP = 64
# Place the stride 2 conv on the 1x1 filter
# Use True only for the original MSRA ResNet; use False for C2 and Torch models
_C.MODEL.RESNETS.STRIDE_IN_1X1 = True
# Residual transformation function
_C.MODEL.RESNETS.TRANS_FUNC = "BottleneckWithFixedBatchNorm"
# ResNet's stem function (conv1 and pool1)
_C.MODEL.RESNETS.STEM_FUNC = "StemWithFixedBatchNorm"
# Apply dilation in stage "res5"
_C.MODEL.RESNETS.RES5_DILATION = 1
_C.MODEL.RESNETS.BACKBONE_OUT_CHANNELS = 256 * 4
_C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256
_C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64
_C.MODEL.RESNETS.STAGE_WITH_DCN = (False, False, False, False)
_C.MODEL.RESNETS.WITH_MODULATED_DCN = False
_C.MODEL.RESNETS.DEFORMABLE_GROUPS = 1
_C.MODEL.RESNETS.LAYERS = (3, 4, 6, 3)
# ---------------------------------------------------------------------------- #
# FPN options
# ---------------------------------------------------------------------------- #
_C.MODEL.FPN = CN()
_C.MODEL.FPN.USE_GN = False
_C.MODEL.FPN.USE_RELU = False
# ---------------------------------------------------------------------------- #
# RPN options
# ---------------------------------------------------------------------------- #
_C.MODEL.RPN = CN()
_C.MODEL.RPN.USE_FPN = False
# Base RPN anchor sizes given in absolute pixels w.r.t. the scaled network input
_C.MODEL.RPN.ANCHOR_SIZES = (32, 64, 128, 256, 512)
# Stride of the feature map that RPN is attached.
# For FPN, number of strides should match number of scales
_C.MODEL.RPN.ANCHOR_STRIDE = (16,)
# RPN anchor aspect ratios
_C.MODEL.RPN.ASPECT_RATIOS = (0.5, 1.0, 2.0)
# Remove RPN anchors that go outside the image by RPN_STRADDLE_THRESH pixels
# Set to -1 or a large value, e.g. 100000, to disable pruning anchors
_C.MODEL.RPN.STRADDLE_THRESH = 0
# Minimum overlap required between an anchor and ground-truth box for the
# (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD
# ==> positive RPN example)
_C.MODEL.RPN.FG_IOU_THRESHOLD = 0.7
# Maximum overlap allowed between an anchor and ground-truth box for the
# (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD
# ==> negative RPN example)
_C.MODEL.RPN.BG_IOU_THRESHOLD = 0.3
# Total number of RPN examples per image
_C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256
# Target fraction of foreground (positive) examples per RPN minibatch
_C.MODEL.RPN.POSITIVE_FRACTION = 0.5
# Number of top scoring RPN proposals to keep before applying NMS
# When FPN is used, this is *per FPN level* (not total)
_C.MODEL.RPN.PRE_NMS_TOP_N_TRAIN = 12000
_C.MODEL.RPN.PRE_NMS_TOP_N_TEST = 6000
# Number of top scoring RPN proposals to keep after applying NMS
_C.MODEL.RPN.POST_NMS_TOP_N_TRAIN = 2000
_C.MODEL.RPN.POST_NMS_TOP_N_TEST = 1000
# NMS threshold used on RPN proposals
_C.MODEL.RPN.NMS_THRESH = 0.7
# Proposal height and width both need to be greater than RPN_MIN_SIZE
# (a the scale used during training or inference)
_C.MODEL.RPN.MIN_SIZE = 0
# Number of top scoring RPN proposals to keep after combining proposals from
# all FPN levels
_C.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN = 2000
_C.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST = 2000
_C.MODEL.SEG = CN()
_C.MODEL.SEG.USE_FPN = False
_C.MODEL.SEG.USE_FUSE_FEATURE = False
# Total number of SEG examples per image
_C.MODEL.SEG.BATCH_SIZE_PER_IMAGE = 256
# Target fraction of foreground (positive) examples per SEG minibatch
_C.MODEL.SEG.POSITIVE_FRACTION = 0.5
# NMS threshold used on SEG proposals
_C.MODEL.SEG.BINARY_THRESH = 0.5
_C.MODEL.SEG.USE_MULTIPLE_THRESH = False
_C.MODEL.SEG.MULTIPLE_THRESH = (0.2, 0.3, 0.5, 0.7)
_C.MODEL.SEG.BOX_THRESH = 0.7
# Proposal height and width both need to be greater than RPN_MIN_SIZE
# (a the scale used during training or inference)
_C.MODEL.SEG.MIN_SIZE = 0
_C.MODEL.SEG.SHRINK_RATIO = 0.5
# Number of top scoring RPN proposals to keep after combining proposals from
# all FPN levels
_C.MODEL.SEG.TOP_N_TRAIN = 1000
_C.MODEL.SEG.TOP_N_TEST = 1000
_C.MODEL.SEG.AUG_PROPOSALS = False
_C.MODEL.SEG.IGNORE_DIFFICULT = True
_C.MODEL.SEG.EXPAND_RATIO = 1.6
_C.MODEL.SEG.BOX_EXPAND_RATIO = 1.5
_C.MODEL.SEG.USE_SEG_POLY = False
_C.MODEL.SEG.USE_PPM = False
# ---------------------------------------------------------------------------- #
# ROI HEADS options
# ---------------------------------------------------------------------------- #
_C.MODEL.ROI_HEADS = CN()
_C.MODEL.ROI_HEADS.USE_FPN = False
# Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD)
_C.MODEL.ROI_HEADS.FG_IOU_THRESHOLD = 0.5
# Overlap threshold for an RoI to be considered background
# (class = 0 if overlap in [0, BG_IOU_THRESHOLD))
_C.MODEL.ROI_HEADS.BG_IOU_THRESHOLD = 0.5
# Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets
# These are empirically chosen to approximately lead to unit variance targets
_C.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS = (10.0, 10.0, 5.0, 5.0)
# RoI minibatch size *per image* (number of regions of interest [ROIs])
# Total number of RoIs per training minibatch =
# TRAIN.BATCH_SIZE_PER_IM * TRAIN.IMS_PER_BATCH * NUM_GPUS
# E.g., a common configuration is: 512 * 2 * 8 = 8192
_C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
# Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0)
_C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25
# Only used on test mode
# Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to
# balance obtaining high recall with not having too many low precision
# detections that will slow down inference post processing steps (like NMS)
# _C.MODEL.ROI_HEADS.SCORE_THRESH = 0.05
_C.MODEL.ROI_HEADS.SCORE_THRESH = 0.0
# Overlap threshold used for non-maximum suppression (suppress boxes with
# IoU >= this threshold)
_C.MODEL.ROI_HEADS.NMS = 0.5
# Maximum number of detections to return per image (100 is based on the limit
# established for the COCO dataset)
_C.MODEL.ROI_HEADS.DETECTIONS_PER_IMG = 100
_C.MODEL.ROI_BOX_HEAD = CN()
_C.MODEL.ROI_BOX_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor"
_C.MODEL.ROI_BOX_HEAD.PREDICTOR = "FastRCNNPredictor"
_C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_BOX_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_BOX_HEAD.NUM_CLASSES = 81
# Hidden layer dimension when using an MLP for the RoI box head
_C.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM = 1024
_C.MODEL.ROI_BOX_HEAD.USE_REGRESSION = True
_C.MODEL.ROI_BOX_HEAD.INFERENCE_USE_BOX = True
_C.MODEL.ROI_BOX_HEAD.USE_MASKED_FEATURE = False
_C.MODEL.ROI_BOX_HEAD.SOFT_MASKED_FEATURE_RATIO = 0.
_C.MODEL.ROI_BOX_HEAD.MIX_OPTION = ""
_C.MODEL.ROI_MASK_HEAD = CN()
_C.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor"
_C.MODEL.ROI_MASK_HEAD.PREDICTOR = "MaskRCNNC4Predictor"
_C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION_H = 32
_C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION_W = 128
_C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_MASK_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_MASK_HEAD.MLP_HEAD_DIM = 1024
_C.MODEL.ROI_MASK_HEAD.CONV_LAYERS = (256, 256, 256, 256)
_C.MODEL.ROI_MASK_HEAD.RESOLUTION = 14
_C.MODEL.ROI_MASK_HEAD.RESOLUTION_H = 32
_C.MODEL.ROI_MASK_HEAD.RESOLUTION_W = 128
_C.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True
_C.MODEL.ROI_MASK_HEAD.CHAR_NUM_CLASSES = 38
_C.MODEL.ROI_MASK_HEAD.USE_WEIGHTED_CHAR_MASK = False
_C.MODEL.ROI_MASK_HEAD.MASK_BATCH_SIZE_PER_IM = 64
_C.MODEL.ROI_MASK_HEAD.USE_MASKED_FEATURE = False
_C.MODEL.ROI_MASK_HEAD.SOFT_MASKED_FEATURE_RATIO = 0.
_C.MODEL.ROI_MASK_HEAD.MIX_OPTION = ""
# ---------------------------------------------------------------------------- #
# Solver
# ---------------------------------------------------------------------------- #
_C.SOLVER = CN()
_C.SOLVER.MAX_ITER = 40000
_C.SOLVER.BASE_LR = 0.001
_C.SOLVER.BIAS_LR_FACTOR = 2
_C.SOLVER.MOMENTUM = 0.9
_C.SOLVER.WEIGHT_DECAY = 0.0005
_C.SOLVER.WEIGHT_DECAY_BIAS = 0
_C.SOLVER.GAMMA = 0.1
_C.SOLVER.STEPS = (30000,)
_C.SOLVER.WARMUP_FACTOR = 1.0 / 3
_C.SOLVER.WARMUP_ITERS = 500
_C.SOLVER.WARMUP_METHOD = "linear"
_C.SOLVER.CHECKPOINT_PERIOD = 5000
# Number of images per batch
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.SOLVER.IMS_PER_BATCH = 16
_C.SOLVER.RESUME = True
_C.SOLVER.USE_ADAM = False
_C.SOLVER.POW_SCHEDULE = False
_C.SOLVER.DISPLAY_FREQ = 20
# ---------------------------------------------------------------------------- #
# Specific test options
# ---------------------------------------------------------------------------- #
_C.TEST = CN()
_C.TEST.EXPECTED_RESULTS = []
_C.TEST.EXPECTED_RESULTS_SIGMA_TOL = 4
# Number of images per batch
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.TEST.IMS_PER_BATCH = 8
_C.TEST.VIS = False
# from 0 to 255
_C.TEST.CHAR_THRESH = 128
# ---------------------------------------------------------------------------- #
# Misc options
# ---------------------------------------------------------------------------- #
_C.OUTPUT_DIR = "."
_C.PATHS_CATALOG = os.path.join(os.path.dirname(__file__), "paths_catalog.py")
# ---------------------------------------------------------------------------- #
# Precision options
# ---------------------------------------------------------------------------- #
# Precision of input, allowable: (float32, float16)
_C.DTYPE = "float32"
# Enable verbosity in apex.amp
_C.AMP_VERBOSE = False