3v324v23's picture
add
c310e19
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#include "cpu/vision.h"
template <typename scalar_t>
at::Tensor nms_cpu_kernel(const at::Tensor& dets,
const at::Tensor& scores,
const float threshold) {
AT_ASSERTM(!dets.type().is_cuda(), "dets must be a CPU tensor");
AT_ASSERTM(!scores.type().is_cuda(), "scores must be a CPU tensor");
AT_ASSERTM(dets.type() == scores.type(), "dets should have the same type as scores");
if (dets.numel() == 0) {
return at::empty({0}, dets.options().dtype(at::kLong).device(at::kCPU));
}
auto x1_t = dets.select(1, 0).contiguous();
auto y1_t = dets.select(1, 1).contiguous();
auto x2_t = dets.select(1, 2).contiguous();
auto y2_t = dets.select(1, 3).contiguous();
at::Tensor areas_t = (x2_t - x1_t + 1) * (y2_t - y1_t + 1);
auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
auto ndets = dets.size(0);
at::Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte).device(at::kCPU));
auto suppressed = suppressed_t.data<uint8_t>();
auto order = order_t.data<int64_t>();
auto x1 = x1_t.data<scalar_t>();
auto y1 = y1_t.data<scalar_t>();
auto x2 = x2_t.data<scalar_t>();
auto y2 = y2_t.data<scalar_t>();
auto areas = areas_t.data<scalar_t>();
for (int64_t _i = 0; _i < ndets; _i++) {
auto i = order[_i];
if (suppressed[i] == 1)
continue;
auto ix1 = x1[i];
auto iy1 = y1[i];
auto ix2 = x2[i];
auto iy2 = y2[i];
auto iarea = areas[i];
for (int64_t _j = _i + 1; _j < ndets; _j++) {
auto j = order[_j];
if (suppressed[j] == 1)
continue;
auto xx1 = std::max(ix1, x1[j]);
auto yy1 = std::max(iy1, y1[j]);
auto xx2 = std::min(ix2, x2[j]);
auto yy2 = std::min(iy2, y2[j]);
auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1 + 1);
auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1 + 1);
auto inter = w * h;
auto ovr = inter / (iarea + areas[j] - inter);
if (ovr >= threshold)
suppressed[j] = 1;
}
}
return at::nonzero(suppressed_t == 0).squeeze(1);
}
at::Tensor nms_cpu(const at::Tensor& dets,
const at::Tensor& scores,
const float threshold) {
at::Tensor result;
AT_DISPATCH_FLOATING_TYPES(dets.type(), "nms", [&] {
result = nms_cpu_kernel<scalar_t>(dets, scores, threshold);
});
return result;
}