File size: 24,087 Bytes
c9019cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright (c) 2022, National Diet Library, Japan
#
# This software is released under the CC BY 4.0.
# https://creativecommons.org/licenses/by/4.0/


import argparse
import functools
import difflib
import collections
import pathlib
from tqdm import tqdm

import xml.etree.ElementTree as ET
from xml.dom import minidom

from PIL import Image, ImageDraw, ImageFont
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch.utils.data import ConcatDataset, Subset
from nltk.metrics import edit_distance

from utils import CTCLabelConverter, AttnLabelConverter
from dataset import XMLLmdbDataset, AlignCollate, tensor2im
from model import Model
from xmlparser import XMLRawDataset, SyntheticDataset, XMLRawDatasetWithCli
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def gen_dataset(db_type, db_path, opt, line_index=None, accept_empty=True, keep_remain=False):
    if db_type == 'xmllmdb':
        ds = ConcatDataset([XMLLmdbDataset(root=p, opt=opt) for p in db_path])
        if line_index is not None:
            ds = Subset(ds, opt.line_index)
    elif db_type == 'xmlraw':
        ds = XMLRawDataset.from_list(input_paths=db_path,
                                     image_type=XMLRawDataset.IMAGE_TYPE_GRAY_IMAGE,
                                     accept_empty=accept_empty, keep_remain=keep_remain)
        opt.workers = 0
    elif db_type == 'synth':
        ds = SyntheticDataset(opt.character, db_path)
    return ds


def _debug_char_prob(preds_prob, character):
    preds_v, preds_i = torch.topk(preds_prob, 3)
    for b in zip(preds_v.tolist(), preds_i.tolist()):
        for p3, i3 in zip(*b):
            if i3[0] == 0:
                continue
            for p, i in zip(p3, i3):
                if p > 0.01:
                    print(f'{p:.2f}', character[i-1], end=' ')
            print()
        print('--------')


class Inferencer:
    @staticmethod
    def get_argparser():
        parser = argparse.ArgumentParser()
        parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
        parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
        parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
        """ Data processing """
        parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
        parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
        parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
        parser.add_argument('--rgb', action='store_true', help='use rgb input')
        parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
        parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
        parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
        parser.add_argument('--remove_char', default=None, help='remove the specified index class. ex. 〓')
        """ Model Architecture """
        parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
        parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
        parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
        parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
        parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
        parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
        parser.add_argument('--output_channel', type=int, default=512,
                            help='the number of output channel of Feature extractor')
        parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
        return parser

    def __init__(self, opt):
        """
        Args:
            opt
                上記get_parserによってparseされたargument
        """
        # model config
        if 'CTC' in opt.Prediction:
            converter = CTCLabelConverter(opt.character)
        else:
            converter = AttnLabelConverter(opt.character)
        opt.num_class = len(converter.character)
        if opt.remove_char is not None:
            opt.remove_char = opt.character.index(opt.remove_char) + 1

        if opt.rgb:
            opt.input_channel = 3
        model = Model(opt)
        print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
              opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
              opt.SequenceModeling, opt.Prediction)
        model = torch.nn.DataParallel(model).to(device)

        # load model
        print('loading pretrained model from %s' % opt.saved_model)
        model.load_state_dict(torch.load(opt.saved_model, map_location=device))

        self.model = model
        self.converter = converter
        self.aligncollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
        self.opt = opt

    def gen(self, dataset, keep_remain=False, with_tqdm=False):
        """
        Args:
            dataset
                以下を生成するtorch.utils.data.Dataset
                PIL.Image(mode="L"), {'WIDTH': int, 'HEIGHT': int, 'STRING': string}
            keep_remain
                これが有効のとき、xmlraw dbは偶数週目に
                推論しない要素を吐くようになる
            with_tqdm
                これが有効のとき、進捗表示をする
        Yields:
            image
            groundtruth label
            prediction label
            confidence score
            appendix information
        """
        converter = self.converter

        demo_loader = torch.utils.data.DataLoader(
            dataset, batch_size=self.opt.batch_size,
            shuffle=False,
            num_workers=int(self.opt.workers),
            collate_fn=self.aligncollate, pin_memory=True)
        if with_tqdm:
            demo_loader = tqdm(demo_loader, ncols=80)

        # predict
        self.model.eval()
        with torch.no_grad():
            for image_tensors, labels, data in demo_loader:
                batch_size = image_tensors.size(0)
                image = image_tensors.to(device)
                # For max length prediction
                length_for_pred = torch.IntTensor([self.opt.batch_max_length] * batch_size).to(device)
                text_for_pred = torch.LongTensor(batch_size, self.opt.batch_max_length + 1).fill_(0).to(device)

                if 'CTC' in self.opt.Prediction:
                    preds = self.model(image, text_for_pred)
                    if self.opt.remove_char is not None:
                        preds[:, :, self.opt.remove_char] = -1e5

                    # Select max probabilty (greedy decoding) then decode index to character
                    preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                    _, preds_index = preds.max(2)
                    # preds_index = preds_index.view(-1)
                    preds_str = converter.decode(preds_index, preds_size)
                else:
                    preds = self.model(image, text_for_pred, is_train=False)

                    # select max probabilty (greedy decoding) then decode index to character
                    _, preds_index = preds.max(2)
                    preds_str = converter.decode(preds_index, length_for_pred)

                preds_prob = F.softmax(preds, dim=2)
                preds_max_prob, _ = preds_prob.max(dim=2)

                if 0:
                    _debug_char_prob(preds_prob, self.opt.character)

                for image, gt, pred, pred_max_prob, datum in zip(image, labels, preds_str, preds_max_prob, data):
                    if 'Attn' in self.opt.Prediction:
                        pred_EOS = pred.find('[s]')
                        pred = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
                        pred_max_prob = pred_max_prob[:pred_EOS]

                    # calculate confidence score (= multiply of pred_max_prob)
                    try:
                        confidence_score = pred_max_prob.cumprod(dim=0)[-1]
                    except Exception:
                        confidence_score = 0  # for empty pred case, when prune after "end of sentence" token ([s])

                    yield image, gt, pred, confidence_score, datum

            if keep_remain:
                for datum in dataset:
                    yield None, None, None, None, datum


class TR_WORKER:
    CHAR_DIFF_NONE = 0
    CHAR_DIFF_WRONG = 1
    CHAR_DIFF_ALL = 2

    def __init__(self,
                 accuracy=False,
                 levenshtein_distance=False,
                 char_diff=CHAR_DIFF_NONE,
                 render=False,
                 xml=None,
                 outimage_dir=None, font_path=None,
                 stat=False):
        self._task = []
        self._accuracy = accuracy
        self._char_diff = char_diff
        self._levenshtein_distance = levenshtein_distance
        self._xml = xml
        self._stat = stat

        self.nline = 0
        if accuracy:
            self.accuracy = 0
            self.ncorrect = 0
            self._task.append(self._facc)

        if levenshtein_distance:
            self.sum_dist = 0
            self.normalized_edit_distance = 0
            self._task.append(self._fld)

        if char_diff != self.CHAR_DIFF_NONE:
            self.counters = {
                'misstake': collections.Counter(),
                'tp': collections.Counter(),
                'fn': collections.Counter(),
                'fp': collections.Counter(),
            }
            self._task.append(self._fchar_diff)

            self.outimage_dir = outimage_dir
            if outimage_dir is None:
                self.outimage_dir = None
            else:
                assert font_path is not None
                self.outimage_dir = pathlib.Path(outimage_dir)
                self.outimage_dir.mkdir(exist_ok=True)
                dtmp = ImageDraw.Draw(Image.new('L', (400, 200)))
                self._font = ImageFont.truetype(font_path, 32)
                self._textsize = functools.partial(dtmp.multiline_textsize, font=self._font)

        if render:
            self._task.append(self._frender)
            assert font_path is not None
            assert outimage_dir is not None
            self.outimage_dir = pathlib.Path(outimage_dir)
            self.outimage_dir.mkdir(exist_ok=True)
            dtmp = ImageDraw.Draw(Image.new('L', (400, 200)))
            self._font = ImageFont.truetype(font_path, 32)
            self._textsize = functools.partial(dtmp.multiline_textsize, font=self._font)

        if xml:
            self.outxml_dir = pathlib.Path(xml)
            self.outxml_dir.mkdir(exist_ok=True)
            self._xml_data = {}
            self._task.append(self._fxml)

    def finalize(self):
        if self._accuracy:
            self.accuracy = self.ncorrect / self.nline
        if self._levenshtein_distance:
            self.normalized_edit_distance = self.sum_dist / self.nline
        if self._xml:
            self._fgenerate_xml()
        if self._stat:
            print('===== f measure =====')
            for c in self.counters['tp'].keys() | self.counters['fp'].keys() | self.counters['fn'].keys():
                tp = self.counters['tp'][c]
                precision = tp / (tp + self.counters['fp'][c] + 1e-9)
                recall = tp / (tp + self.counters['fn'][c] + 1e-9)
                print(c, f"{2 * precision * recall / (precision + recall + 1e-9):.3f}")
            print('===== misstake stat =====')
            for p, n in self.counters['misstake'].most_common():
                if p[1] == '-':
                    print(p, n, f"U+{ord(p[0]):X} U+{ord(p[2]):X}")
        return self

    def _facc(self, correct, *args):
        if correct:
            self.ncorrect += 1

    def _fld(self, correct, image, gt, pred, *args):
        d = edit_distance(gt, pred)
        if len(gt) == 0 and len(pred) == 0:
            self.sum_dist += 0
        elif len(gt) > len(pred):
            self.sum_dist += 1 - d / len(gt)
        else:
            self.sum_dist += 1 - d / len(pred)

    def _frender(self, correct, image, sa1, sb1, *args):
        image_pil = Image.fromarray(tensor2im(image))
        w, h = self._textsize(f'{sb1}')
        g = Image.new(image_pil.mode, (w, h), (255, 255, 255))
        d = ImageDraw.Draw(g)
        p = [0, 0]
        draw_escape_colored_text(sb1, d, p=p, font=self._font)
        if h * image_pil.width > image_pil.height * 2 * w:
            w = w * image_pil.height * 2 // h
            h = image_pil.height * 2
        else:
            h = h * image_pil.width // w
            w = image_pil.width
        g = g.resize((w, h))
        canvas = Image.new(image_pil.mode, (image_pil.width, image_pil.height + h), (255, 255, 255))
        canvas.paste(image_pil)
        canvas.paste(g, (0, image_pil.height))
        canvas.save(self.outimage_dir / f'{self.nline:09d}-{sb1.replace("/", "")}.png')

    def _fchar_diff(self, correct, image, sa1, sb1, *args):
        if correct and self._char_diff != self.CHAR_DIFF_ALL:
            if self._char_diff == self.CHAR_DIFF_ALL:
                print('------------------')
                print(sa1)
            return
        if sa1 is None:
            sa1 = ''
        sm = difflib.SequenceMatcher(None, sa1, sb1)
        sa2 = str()
        sb2 = str()
        reason = ''
        for tag, ia1, ia2, ib1, ib2 in sm.get_opcodes():
            if tag == 'equal':
                sa2 += "\033[0m"
                sb2 += "\033[0m"
                self.counters['tp'].update(list(sa1[ia1:ia2]))
            elif tag == 'replace':
                sa2 += "\033[31m"
                sb2 += "\033[31m"
                self.counters['fn'].update(list(sa1[ia1:ia2]))
                self.counters['fp'].update(list(sb1[ia1:ib2]))
                for ia, ib in zip(range(ia1, ia2), range(ib1, ib2)):
                    self.counters['misstake'].update([f'{sa1[ia]}-{sb1[ib]}'])
                    reason += f'{sa1[ia]}-{sb1[ib]},'
            elif tag == 'insert':
                sb2 += "\033[33m"
                self.counters['fp'].update(list(sb1[ia1:ib2]))
                for ia in range(ia1, ia2):
                    self.counters['misstake'].update([f'{sa1[ia]}> '])
                    reason += f'{sa1[ia]}> ,'
            elif tag == 'delete':
                sa2 += "\033[33m"
                self.counters['fn'].update(list(sa1[ia1:ia2]))
                for ib in range(ib1, ib2):
                    self.counters['misstake'].update([f' <{sb1[ib]}'])
                    reason += f' <{sb1[ib]},'
            sa2 += sa1[ia1:ia2]
            sb2 += sb1[ib1:ib2]
        sa2 += '\033[0m'
        sb2 += '\033[0m'

        if self._char_diff != self.CHAR_DIFF_NONE:
            print(f'-{self.nline:09d}-----------------')
            print(sa2)
            print(sb2)

        if self.outimage_dir is not None:
            image_pil = Image.fromarray(tensor2im(image))
            w, h = self._textsize(f'{sa2}\n{sb2}')
            g = Image.new(image_pil.mode, (w, h), (255, 255, 255))
            d = ImageDraw.Draw(g)
            p = [0, 0]
            draw_escape_colored_text(sa2, d, p=p, font=self._font)
            draw_escape_colored_text(sb2, d, p=p, font=self._font)
            if h * image_pil.width > image_pil.height * 4 * w:
                w = w * image_pil.height * 4 // h
                h = image_pil.height * 4
            else:
                h = h * image_pil.width // w
                w = image_pil.width
            g = g.resize((w, h))
            canvas = Image.new(image_pil.mode, (image_pil.width, image_pil.height + h), (255, 255, 255))
            canvas.paste(image_pil)
            canvas.paste(g, (0, image_pil.height))
            # canvas.save(self.outimage_dir / f'{self.nline:09d}-{reason}.png')
            canvas.save(self.outimage_dir / f'{self.nline:09d}-{sa1.replace("/", "")}.png')

    def _fxml(self, _1, _2, _3, pred_str, conf, data):
        d = dict()
        for attr in ['tag', 'DIRECTION', 'TYPE', 'X', 'Y', 'WIDTH', 'HEIGHT', 'CONF']:
            if attr in data:
                d[attr] = f"{data[attr]}"
        if conf is not None:
            d['STR_CONF'] = f"{conf:.3f}"
        if pred_str is not None:
            d['STRING'] = pred_str
        pid = data['path'].parents[1].name
        imagename = data['path'].name

        if pid not in self._xml_data:
            self._xml_data[pid] = {}
        if imagename not in self._xml_data[pid]:
            self._xml_data[pid][imagename] = []

        self._xml_data[pid][imagename].append(d)

    def _fgenerate_xml(self):
        for pid, pages in self._xml_data.items():
            xml_data = ET.Element('OCRDATASET')
            ET.register_namespace('', 'NDLOCRDATASET')
            for p, lines in pages.items():
                page = ET.SubElement(xml_data, 'PAGE', attrib={'IMAGENAME': p})
                for line in lines:
                    line = ET.SubElement(page, line.pop('tag', 'LINE'), attrib=line)

            xml_str = minidom.parseString(ET.tostring(xml_data, encoding='utf-8', method='xml')).toprettyxml(indent=' ')
            out_xml_path = self.outxml_dir / (pid + '.xml')

            with out_xml_path.open(mode='w') as f:
                f.write(xml_str)

    def __call__(self, generator):
        for image, gt, pred, conf, data in generator:
            correct = gt == pred
            for t in self._task:
                t(correct, image, gt, pred, conf, data)
            self.nline += 1
        return self


def draw_escape_colored_text(t, d, p, font):
    get_textsize = functools.partial(d.textsize, font=font)
    it = iter(t)
    cl = (0, 0, 0)
    for c in it:
        if c == '\033':
            n = next(it)
            while n[-1] != 'm':
                n += next(it)
            if n == '[0m':
                cl = (0, 0, 0)
            elif n == '[31m':
                cl = (255, 0, 0)
            elif n == '[33m':
                cl = (255, 255, 0)
            continue
        else:
            size = get_textsize(c)

        d.text(p, c, font=font, fill=cl)
        p[0] += size[0]
    p[0], p[1] = 0, get_textsize(t)[1]


class InferencerWithCLI:
    def __init__(self, conf_dict, character):
        class EmptyOption():
            def __init__(self):
                return

        # create option dictionary from parser
        parser = Inferencer.get_argparser()
        option_key_dict = {}
        for action in parser._actions:
            for opt_str in action.option_strings:
                key_str = None
                if opt_str.startswith('--'):
                    key_str = opt_str[2:]
                    option_key_dict[key_str] = parser.get_default(key_str)

        # create option instance
        opt = EmptyOption()
        for k, v in option_key_dict.items():
            setattr(opt, k, v)
        opt.saved_model = conf_dict['saved_model']
        opt.batch_max_length = conf_dict['batch_max_length']
        opt.batch_size = conf_dict['batch_size']
        opt.character = character
        opt.imgW = conf_dict['imgW']
        opt.workers = conf_dict['workers']
        opt.xml = conf_dict['xml']
        opt.FeatureExtraction = conf_dict['FeatureExtraction']
        opt.Prediction = conf_dict['Prediction']
        opt.PAD = conf_dict['PAD']
        opt.SequenceModeling = conf_dict['SequenceModeling']
        opt.Transformation = conf_dict['Transformation']

        self.opt = opt
        self.inf = Inferencer(self.opt)

        return

    def inference_wich_cli(self, img_data, xml_data, accept_empty=False,
                           yield_block_pillar=True, yield_block_page_num=True):

        cudnn.benchmark = True
        cudnn.deterministic = True
        num_gpu = torch.cuda.device_count()
        dataset = XMLRawDatasetWithCli(img_data, xml_data,
                                       accept_empty=accept_empty,
                                       yield_block_pillar=yield_block_pillar,
                                       yield_block_page_num=yield_block_page_num)
        generator = self.inf.gen(dataset, keep_remain=self.opt.xml)

        result_list = []
        for image, gt, pred, conf, data in generator:
            result_list.append(pred)

        for xml_line in xml_data.getroot().find('PAGE'):
            if len(result_list) == 0:
                print('ERROR: mismatch num of predicted result and xml line')
                break
            if result_list[0] is None:
                print('No predicted STRING for this xml_line')
                print(xml_line.attrib)
                del result_list[0]
                continue
            xml_line.set('STRING', result_list.pop(0))

        return xml_data


if __name__ == '__main__':
    parser = Inferencer.get_argparser()
    g = parser.add_argument_group('db settings')
    g.add_argument('--db_path', required=True, nargs='+', help='データベースへのパス(複数指定可). synthの場合はfont pathを指定する')
    g.add_argument('--db_type', choices=['xmlraw', 'xmllmdb', 'synth'], help='データベースの種類', default='xmlraw')
    g.add_argument('--line_index', type=int, nargs='+', default=None, help='指定の行のみに対して推論. xmllmdb使用時のみ有効')
    action = parser.add_argument_group()
    action.add_argument('--diff', nargs='?', default='none', const='wrong', choices=['none', 'wrong', 'all'],
                        help='差分表示. 画像出力したい場合にはoutimage_dirとfont_pathを指定する')
    action.add_argument('--render', action='store_true', help='diffのgtなし番. outimage_dirとfont_pathが必要')
    action.add_argument('--leven', action='store_true', help='normalized edit distance')
    action.add_argument('--acc', action='store_true', help='accuracy')
    action.add_argument('--xml', default=None, help='xml出力を行う先を指定する')
    parser.add_argument('--stat', action='store_true', help='diff指定時の出力を詳細にする')
    parser.add_argument('--outimage_dir', default=None, help='diff指定時の画像出力先')
    parser.add_argument('--font_path', default=None, help='diff指定時画像出力する際に使用するttf font')
    parser.add_argument('--skip_empty', dest='accept_empty', action='store_false', help='GTが空行の推論を行わない')
    opt = parser.parse_args()

    assert opt.diff != 'none' or opt.render or opt.leven or opt.acc or opt.xml

    cudnn.benchmark = True
    cudnn.deterministic = True
    opt.num_gpu = torch.cuda.device_count()

    dataset = gen_dataset(opt.db_type, opt.db_path, opt, line_index=opt.line_index,
                          accept_empty=opt.accept_empty, keep_remain=opt.xml)
    generator = Inferencer(opt).gen(dataset, keep_remain=opt.xml, with_tqdm=True)
    char_diff = {
        'none': TR_WORKER.CHAR_DIFF_NONE,
        'wrong': TR_WORKER.CHAR_DIFF_WRONG,
        'all': TR_WORKER.CHAR_DIFF_ALL,
    }[opt.diff]
    w = TR_WORKER(char_diff=char_diff, render=opt.render, stat=opt.stat,
                  accuracy=opt.acc, levenshtein_distance=opt.leven,
                  xml=opt.xml,
                  outimage_dir=opt.outimage_dir,
                  font_path=opt.font_path)(generator).finalize()
    if w._accuracy:
        print(f'Accuracy: {w.accuracy:.4f}')
    if w._levenshtein_distance:
        print(f'Normalized Edit Distance: {w.normalized_edit_distance:.4f}')