File size: 4,910 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
""" Deskews file after getting skew angle """
"""
This code is based on the following file:
https://github.com/kakul/Alyn/blob/master/alyn/deskew.py
"""
import optparse
import numpy as np
import os
from alyn3.skew_detect import SkewDetect
import cv2
class Deskew:
def __init__(self, input_file, output_file, r_angle=0,
skew_max=4.0, acc_deg=0.1, method=1,
roi_w=1.0, roi_h=1.0,
gray=1.0, quality=100, short=None):
self.input_file = input_file
self.output_file = output_file
self.r_angle = r_angle
self.method = method
self.gray = gray
self.quality = quality
self.short = short
self.skew_obj = SkewDetect(self.input_file,
skew_max=skew_max, acc_deg=acc_deg,
roi_w=roi_w, roi_h=roi_h)
def deskew(self):
print('input: '+self.input_file)
res = self.skew_obj.process_single_file()
angle = res['Estimated Angle']
rot_angle = angle + self.r_angle
img = cv2.imread(self.input_file, cv2.IMREAD_COLOR)
g = self.gray * 255
rotated = self.rotate_expand(img, rot_angle, g)
if self.short:
h = rotated.shape[0]
w = rotated.shape[1]
print('origin w,h: {}, {}'.format(w, h))
if w < h:
h = int(h*self.short/w+0.5)
w = self.short
else:
w = int(w*self.short/h+0.5)
h = self.short
print('resized w,h: {}, {}'.format(w, h))
rotated = cv2.resize(rotated, (w, h))
if self.output_file:
self.save_image(rotated)
return res
def deskew_on_memory(self, input_data):
res = self.skew_obj.determine_skew_on_memory(input_data)
angle = res['Estimated Angle']
rot_angle = angle + self.r_angle
img = input_data
g = self.gray * 255
rotated = self.rotate_expand(img, rot_angle, g)
if self.short:
h = rotated.shape[0]
w = rotated.shape[1]
print('origin w,h: {}, {}'.format(w, h))
if w < h:
h = int(h*self.short/w+0.5)
w = self.short
else:
w = int(w*self.short/h+0.5)
h = self.short
print('resized w,h: {}, {}'.format(w, h))
rotated = cv2.resize(rotated, (w, h))
return rotated
def save_image(self, img):
path = self.skew_obj.check_path(self.output_file)
if os.path.splitext(path)[1] in ['.jpg', '.JPG', '.jpeg', '.JPEG']:
cv2.imwrite(path, img, [cv2.IMWRITE_JPEG_QUALITY, 100])
else:
cv2.imwrite(path, img)
def rotate_expand(self, img, angle=0, g=255):
h = img.shape[0]
w = img.shape[1]
angle_rad = angle/180.0*np.pi
w_rot = int(np.round(h*np.absolute(np.sin(angle_rad)) +
w*np.absolute(np.cos(angle_rad))))
h_rot = int(np.round(h*np.absolute(np.cos(angle_rad)) +
w*np.absolute(np.sin(angle_rad))))
size_rot = (w_rot, h_rot)
mat = cv2.getRotationMatrix2D((w/2, h/2), angle, 1.0)
mat[0][2] = mat[0][2] - w/2 + w_rot/2
mat[1][2] = mat[1][2] - h/2 + h_rot/2
rotated = cv2.warpAffine(img, mat, size_rot, borderValue=(g, g, g))
return rotated
def run(self):
if self.input_file:
return self.deskew()
def optparse_args():
parser = optparse.OptionParser()
parser.add_option(
'-i',
'--input',
default=None,
dest='input_file',
help='Input file name')
parser.add_option(
'-o', '--output',
default=None,
dest='output_file',
help='Output file name')
parser.add_option(
'-r', '--rotate',
default=0,
dest='r_angle',
help='Rotate the image to desired axis',
type=int)
parser.add_option(
'-g', '--gray',
default=1.0,
dest='gray',
help='Gray level outside the input image boundaries.\n'
'between 0.0(black) and 1.0(white)\n'
'[0.0, 1.0], default: 1.0',
type=float)
parser.add_option(
'-q', '--quality',
default=100,
dest='quality',
help='output jpeg image quality. i\n'
'1 is worst quality and smallest file size,\n'
'and 100 is best quality and largest file size.\n'
'[1, 100], default: 100',
type=int)
return parser.parse_args()
if __name__ == '__main__':
options, args = optparse_args()
deskew_obj = Deskew(
options.input_file,
options.display_image,
options.output_file,
options.r_angle,
options.gray,
options.quality)
deskew_obj.run()
|