File size: 2,654 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# DeepFashion
<!-- [DATASET] -->
[MMFashion](https://github.com/open-mmlab/mmfashion) develops "fashion parsing and segmentation" module
based on the dataset
[DeepFashion-Inshop](https://drive.google.com/drive/folders/0B7EVK8r0v71pVDZFQXRsMDZCX1E?usp=sharing).
Its annotation follows COCO style.
To use it, you need to first download the data. Note that we only use "img_highres" in this task.
The file tree should be like this:
```sh
mmdetection
βββ mmdet
βββ tools
βββ configs
βββ data
β βββ DeepFashion
β β βββ In-shop
β β βββ Anno
β β βΒ Β βββ segmentation
β β βΒ Β | βββ DeepFashion_segmentation_train.json
β β βΒ Β | βββ DeepFashion_segmentation_query.json
β β βΒ Β | βββ DeepFashion_segmentation_gallery.json
β β βΒ Β βββ list_bbox_inshop.txt
β β βΒ Β βββ list_description_inshop.json
β β βΒ Β βββ list_item_inshop.txt
β β βΒ Β βββ list_landmarks_inshop.txt
β β βββ Eval
β β β βββ list_eval_partition.txt
β β βββ Img
β β β βββ img
β β β β βββXXX.jpg
β β β βββ img_highres
β β β βββ βββXXX.jpg
```
After that you can train the Mask RCNN r50 on DeepFashion-In-shop dataset by launching training with the `mask_rcnn_r50_fpn_1x.py` config
or creating your own config file.
```
@inproceedings{liuLQWTcvpr16DeepFashion,
author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}
```
## Model Zoo
| Backbone | Model type | Dataset | bbox detection Average Precision | segmentation Average Precision | Config | Download (Google) |
| :---------: | :----------: | :-----------------: | :--------------------------------: | :----------------------------: | :---------:| :-------------------------: |
| ResNet50 | Mask RCNN | DeepFashion-In-shop | 0.599 | 0.584 |[config](https://github.com/open-mmlab/mmdetection/blob/master/configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py)| [model](https://drive.google.com/open?id=1q6zF7J6Gb-FFgM87oIORIt6uBozaXp5r) | [log](https://drive.google.com/file/d/1qTK4Dr4FFLa9fkdI6UVko408gkrfTRLP/view?usp=sharing) |
|