File size: 2,566 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import argparse
import torch
from mmcv import Config, DictAction
from mmdet.models import build_detector
try:
from mmcv.cnn import get_model_complexity_info
except ImportError:
raise ImportError('Please upgrade mmcv to >0.6.2')
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[1280, 800],
help='input image size')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def main():
args = parse_args()
if len(args.shape) == 1:
input_shape = (3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (3, ) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# import modules from string list.
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
model = build_detector(
cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg'))
if torch.cuda.is_available():
model.cuda()
model.eval()
if hasattr(model, 'forward_dummy'):
model.forward = model.forward_dummy
else:
raise NotImplementedError(
'FLOPs counter is currently not currently supported with {}'.
format(model.__class__.__name__))
flops, params = get_model_complexity_info(model, input_shape)
split_line = '=' * 30
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify that the '
'flops computation is correct.')
if __name__ == '__main__':
main()
|