File size: 5,784 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from math import sqrt
import torch
def gaussian2D(radius, sigma=1, dtype=torch.float32, device='cpu'):
"""Generate 2D gaussian kernel.
Args:
radius (int): Radius of gaussian kernel.
sigma (int): Sigma of gaussian function. Default: 1.
dtype (torch.dtype): Dtype of gaussian tensor. Default: torch.float32.
device (str): Device of gaussian tensor. Default: 'cpu'.
Returns:
h (Tensor): Gaussian kernel with a
``(2 * radius + 1) * (2 * radius + 1)`` shape.
"""
x = torch.arange(
-radius, radius + 1, dtype=dtype, device=device).view(1, -1)
y = torch.arange(
-radius, radius + 1, dtype=dtype, device=device).view(-1, 1)
h = (-(x * x + y * y) / (2 * sigma * sigma)).exp()
h[h < torch.finfo(h.dtype).eps * h.max()] = 0
return h
def gen_gaussian_target(heatmap, center, radius, k=1):
"""Generate 2D gaussian heatmap.
Args:
heatmap (Tensor): Input heatmap, the gaussian kernel will cover on
it and maintain the max value.
center (list[int]): Coord of gaussian kernel's center.
radius (int): Radius of gaussian kernel.
k (int): Coefficient of gaussian kernel. Default: 1.
Returns:
out_heatmap (Tensor): Updated heatmap covered by gaussian kernel.
"""
diameter = 2 * radius + 1
gaussian_kernel = gaussian2D(
radius, sigma=diameter / 6, dtype=heatmap.dtype, device=heatmap.device)
x, y = center
height, width = heatmap.shape[:2]
left, right = min(x, radius), min(width - x, radius + 1)
top, bottom = min(y, radius), min(height - y, radius + 1)
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
masked_gaussian = gaussian_kernel[radius - top:radius + bottom,
radius - left:radius + right]
out_heatmap = heatmap
torch.max(
masked_heatmap,
masked_gaussian * k,
out=out_heatmap[y - top:y + bottom, x - left:x + right])
return out_heatmap
def gaussian_radius(det_size, min_overlap):
r"""Generate 2D gaussian radius.
This function is modified from the `official github repo
<https://github.com/princeton-vl/CornerNet-Lite/blob/master/core/sample/
utils.py#L65>`_.
Given ``min_overlap``, radius could computed by a quadratic equation
according to Vieta's formulas.
There are 3 cases for computing gaussian radius, details are following:
- Explanation of figure: ``lt`` and ``br`` indicates the left-top and
bottom-right corner of ground truth box. ``x`` indicates the
generated corner at the limited position when ``radius=r``.
- Case1: one corner is inside the gt box and the other is outside.
.. code:: text
|< width >|
lt-+----------+ -
| | | ^
+--x----------+--+
| | | |
| | | | height
| | overlap | |
| | | |
| | | | v
+--+---------br--+ -
| | |
+----------+--x
To ensure IoU of generated box and gt box is larger than ``min_overlap``:
.. math::
\cfrac{(w-r)*(h-r)}{w*h+(w+h)r-r^2} \ge {iou} \quad\Rightarrow\quad
{r^2-(w+h)r+\cfrac{1-iou}{1+iou}*w*h} \ge 0 \\
{a} = 1,\quad{b} = {-(w+h)},\quad{c} = {\cfrac{1-iou}{1+iou}*w*h}
{r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}
- Case2: both two corners are inside the gt box.
.. code:: text
|< width >|
lt-+----------+ -
| | | ^
+--x-------+ |
| | | |
| |overlap| | height
| | | |
| +-------x--+
| | | v
+----------+-br -
To ensure IoU of generated box and gt box is larger than ``min_overlap``:
.. math::
\cfrac{(w-2*r)*(h-2*r)}{w*h} \ge {iou} \quad\Rightarrow\quad
{4r^2-2(w+h)r+(1-iou)*w*h} \ge 0 \\
{a} = 4,\quad {b} = {-2(w+h)},\quad {c} = {(1-iou)*w*h}
{r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}
- Case3: both two corners are outside the gt box.
.. code:: text
|< width >|
x--+----------------+
| | |
+-lt-------------+ | -
| | | | ^
| | | |
| | overlap | | height
| | | |
| | | | v
| +------------br--+ -
| | |
+----------------+--x
To ensure IoU of generated box and gt box is larger than ``min_overlap``:
.. math::
\cfrac{w*h}{(w+2*r)*(h+2*r)} \ge {iou} \quad\Rightarrow\quad
{4*iou*r^2+2*iou*(w+h)r+(iou-1)*w*h} \le 0 \\
{a} = {4*iou},\quad {b} = {2*iou*(w+h)},\quad {c} = {(iou-1)*w*h} \\
{r} \le \cfrac{-b+\sqrt{b^2-4*a*c}}{2*a}
Args:
det_size (list[int]): Shape of object.
min_overlap (float): Min IoU with ground truth for boxes generated by
keypoints inside the gaussian kernel.
Returns:
radius (int): Radius of gaussian kernel.
"""
height, width = det_size
a1 = 1
b1 = (height + width)
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
sq1 = sqrt(b1**2 - 4 * a1 * c1)
r1 = (b1 - sq1) / (2 * a1)
a2 = 4
b2 = 2 * (height + width)
c2 = (1 - min_overlap) * width * height
sq2 = sqrt(b2**2 - 4 * a2 * c2)
r2 = (b2 - sq2) / (2 * a2)
a3 = 4 * min_overlap
b3 = -2 * min_overlap * (height + width)
c3 = (min_overlap - 1) * width * height
sq3 = sqrt(b3**2 - 4 * a3 * c3)
r3 = (b3 + sq3) / (2 * a3)
return min(r1, r2, r3)
|