File size: 5,517 Bytes
c9019cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import pytest
import torch

from mmdet.models import Accuracy, build_loss


def test_ce_loss():
    # use_mask and use_sigmoid cannot be true at the same time
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='CrossEntropyLoss',
            use_mask=True,
            use_sigmoid=True,
            loss_weight=1.0)
        build_loss(loss_cfg)

    # test loss with class weights
    loss_cls_cfg = dict(
        type='CrossEntropyLoss',
        use_sigmoid=False,
        class_weight=[0.8, 0.2],
        loss_weight=1.0)
    loss_cls = build_loss(loss_cls_cfg)
    fake_pred = torch.Tensor([[100, -100]])
    fake_label = torch.Tensor([1]).long()
    assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(40.))

    loss_cls_cfg = dict(
        type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)
    loss_cls = build_loss(loss_cls_cfg)
    assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(200.))


def test_varifocal_loss():
    # only sigmoid version of VarifocalLoss is implemented
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='VarifocalLoss', use_sigmoid=False, loss_weight=1.0)
        build_loss(loss_cfg)

    # test that alpha should be greater than 0
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='VarifocalLoss',
            alpha=-0.75,
            gamma=2.0,
            use_sigmoid=True,
            loss_weight=1.0)
        build_loss(loss_cfg)

    # test that pred and target should be of the same size
    loss_cls_cfg = dict(
        type='VarifocalLoss',
        use_sigmoid=True,
        alpha=0.75,
        gamma=2.0,
        iou_weighted=True,
        reduction='mean',
        loss_weight=1.0)
    loss_cls = build_loss(loss_cls_cfg)
    with pytest.raises(AssertionError):
        fake_pred = torch.Tensor([[100.0, -100.0]])
        fake_target = torch.Tensor([[1.0]])
        loss_cls(fake_pred, fake_target)

    # test the calculation
    loss_cls = build_loss(loss_cls_cfg)
    fake_pred = torch.Tensor([[100.0, -100.0]])
    fake_target = torch.Tensor([[1.0, 0.0]])
    assert torch.allclose(loss_cls(fake_pred, fake_target), torch.tensor(0.0))

    # test the loss with weights
    loss_cls = build_loss(loss_cls_cfg)
    fake_pred = torch.Tensor([[0.0, 100.0]])
    fake_target = torch.Tensor([[1.0, 1.0]])
    fake_weight = torch.Tensor([0.0, 1.0])
    assert torch.allclose(
        loss_cls(fake_pred, fake_target, fake_weight), torch.tensor(0.0))


def test_kd_loss():
    # test that temeprature should be greater than 1
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='KnowledgeDistillationKLDivLoss', loss_weight=1.0, T=0.5)
        build_loss(loss_cfg)

    # test that pred and target should be of the same size
    loss_cls_cfg = dict(
        type='KnowledgeDistillationKLDivLoss', loss_weight=1.0, T=1)
    loss_cls = build_loss(loss_cls_cfg)
    with pytest.raises(AssertionError):
        fake_pred = torch.Tensor([[100, -100]])
        fake_label = torch.Tensor([1]).long()
        loss_cls(fake_pred, fake_label)

    # test the calculation
    loss_cls = build_loss(loss_cls_cfg)
    fake_pred = torch.Tensor([[100.0, 100.0]])
    fake_target = torch.Tensor([[1.0, 1.0]])
    assert torch.allclose(loss_cls(fake_pred, fake_target), torch.tensor(0.0))

    # test the loss with weights
    loss_cls = build_loss(loss_cls_cfg)
    fake_pred = torch.Tensor([[100.0, -100.0], [100.0, 100.0]])
    fake_target = torch.Tensor([[1.0, 0.0], [1.0, 1.0]])
    fake_weight = torch.Tensor([0.0, 1.0])
    assert torch.allclose(
        loss_cls(fake_pred, fake_target, fake_weight), torch.tensor(0.0))


def test_accuracy():
    # test for empty pred
    pred = torch.empty(0, 4)
    label = torch.empty(0)
    accuracy = Accuracy(topk=1)
    acc = accuracy(pred, label)
    assert acc.item() == 0

    pred = torch.Tensor([[0.2, 0.3, 0.6, 0.5], [0.1, 0.1, 0.2, 0.6],
                         [0.9, 0.0, 0.0, 0.1], [0.4, 0.7, 0.1, 0.1],
                         [0.0, 0.0, 0.99, 0]])
    # test for top1
    true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
    accuracy = Accuracy(topk=1)
    acc = accuracy(pred, true_label)
    assert acc.item() == 100

    # test for top1 with score thresh=0.8
    true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
    accuracy = Accuracy(topk=1, thresh=0.8)
    acc = accuracy(pred, true_label)
    assert acc.item() == 40

    # test for top2
    accuracy = Accuracy(topk=2)
    label = torch.Tensor([3, 2, 0, 0, 2]).long()
    acc = accuracy(pred, label)
    assert acc.item() == 100

    # test for both top1 and top2
    accuracy = Accuracy(topk=(1, 2))
    true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
    acc = accuracy(pred, true_label)
    for a in acc:
        assert a.item() == 100

    # topk is larger than pred class number
    with pytest.raises(AssertionError):
        accuracy = Accuracy(topk=5)
        accuracy(pred, true_label)

    # wrong topk type
    with pytest.raises(AssertionError):
        accuracy = Accuracy(topk='wrong type')
        accuracy(pred, true_label)

    # label size is larger than required
    with pytest.raises(AssertionError):
        label = torch.Tensor([2, 3, 0, 1, 2, 0]).long()  # size mismatch
        accuracy = Accuracy()
        accuracy(pred, label)

    # wrong pred dimension
    with pytest.raises(AssertionError):
        accuracy = Accuracy()
        accuracy(pred[:, :, None], true_label)